- #1
kristink08
- 3
- 0
This was a problem on a final test I took this april in Reykjavík University and I whould be greatful if you could help me with it.
Let f(x,y)=2x*cos(y^4) be a function and let D be area in R^2 defined by 0≤x≤1 and x^(2/3)≤y≤1.
Calculate the double integer:
∫∫f(x,y)dA
∫dx∫2x*cos(y^4)dy
I have tried to use substitution but that doesn´t lead me anywhere.
I also tried to solve it this way...
∫dy∫2x*cos(y^4)dx which leads to...
∫dy*(x^2*cos(y^4)) and when I add in for x...
∫dy*cos(y^4) and if I use substitution now I will get...
1/4*∫cos(u)du and the final answer isn´t sufficient...
1/4*(sin(1)-sin(x^(8/3)))
I would be very greatful if you could help me...
Homework Statement
Let f(x,y)=2x*cos(y^4) be a function and let D be area in R^2 defined by 0≤x≤1 and x^(2/3)≤y≤1.
Calculate the double integer:
∫∫f(x,y)dA
Homework Equations
The Attempt at a Solution
∫dx∫2x*cos(y^4)dy
I have tried to use substitution but that doesn´t lead me anywhere.
I also tried to solve it this way...
∫dy∫2x*cos(y^4)dx which leads to...
∫dy*(x^2*cos(y^4)) and when I add in for x...
∫dy*cos(y^4) and if I use substitution now I will get...
1/4*∫cos(u)du and the final answer isn´t sufficient...
1/4*(sin(1)-sin(x^(8/3)))
I would be very greatful if you could help me...