How to Calculate Air Flow Through a 1/4 Inch Pipe at 90 PSI?

  • Thread starter Norm Koster
  • Start date
  • Tags
    Air Flow
In summary, the equation for calculating the flow of air through an opening depends on various factors such as temperature, pressure, pipe length, and the assumptions of laminar or turbulent flow. The Hagen-Poiseuille equation can be used for laminar flow, while for turbulent flow, the calculation becomes more complex and requires consideration of compressibility and the Reynolds Number. Empirical correlations can also be used to estimate the flow rate. The accuracy of the calculation can be affected by factors such as pipe length and the slipperiness of the pipe's interior.
  • #1
Norm Koster
2
0
I would like to know the equation for calculating the flow of air through an opening.
I have a 1/4 inch pipe with an area of .0490625 in squared. How much air ( in cu inches) will flow through in 10 seconds if i have 90 psi on one side and atmosphic on the other (14.7 psi).
Thanks
 
Physics news on Phys.org
  • #2
It's going to depend on the temperature of the air and how long a pipe through which you are flowing the air.
 
  • #3
Where was this pressure measured? Was it in some large reservoir of a tank feeding the pipe? Is that pressure constant or is the system losing pressure as it vents? You will also need temperature. It's easier if both the temperature and pressure are in a reservoir of some sort so that they are the total temperature and pressure, though you can figure it out regardless. The length of your pipe COULD be a factor if it is long or bendy but would likely be a small error otherwise.
 
  • #4
Hagen-Poiseuille equation:
Q=Pi*R^4*deltaP/(8*mu*L)
where Q=volumetric flow rate, R=pipe radius, deltaP=pressure difference, mu=viscosity of air(dependent on temperature as SteamKing said), L=pipe length

A quick calculation at 25 degrees C gave me 4406106 cubic feet per minute with L=1 inch. so just divide 4406106 by the length of the pipe in inches and you'll get the flow rate in a laminar flow regime.

^this equation works for laminar flow only. Actual flow will be significantly higher due to turbulence. For this you would calculate the Reynolds Number and then use an empirical correlation to estimate the flow rate.
 
  • #5
colliflour said:
Hagen-Poiseuille equation:
Q=Pi*R^4*deltaP/(8*mu*L)
where Q=volumetric flow rate, R=pipe radius, deltaP=pressure difference, mu=viscosity of air(dependent on temperature as SteamKing said), L=pipe length

A quick calculation at 25 degrees C gave me 4406106 cubic feet per minute with L=1 inch. so just divide 4406106 by the length of the pipe in inches and you'll get the flow rate in a laminar flow regime.

^this equation works for laminar flow only. Actual flow will be significantly higher due to turbulence. For this you would calculate the Reynolds Number and then use an empirical correlation to estimate the flow rate.

That assumes incompressibility though, which is a much bigger source of error than the laminar flow assumption. In this case, compressibility is key, which will cause the flow to choke at the exit of the pipe (and likely cause a much smaller flow rate than what you just estimated).
 
  • #6
http://www.pipeflowcalculations.com/airflow/
Try this. I got flow rates of 149 cfm for 1 inch long pipe for one method and 227 cfm for another method. Depends how in particular the empirical modeling for turbulent flow is done. It also depends on how slippery the inside of the pipe is. Also compared to laminar flow, turbulent flow has much less drop off of flow rate with pipe length. Something like 25% drop in flow with increasing pipe length from 1 inch to 100 inches.
 
  • #7
colliflour said:
http://www.pipeflowcalculations.com/airflow/
Try this. I got flow rates of 149 cfm for 1 inch long pipe for one method and 227 cfm for another method. Depends how in particular the empirical modeling for turbulent flow is done. It also depends on how slippery the inside of the pipe is. Also compared to laminar flow, turbulent flow has much less drop off of flow rate with pipe length. Something like 25% drop in flow with increasing pipe length from 1 inch to 100 inches.

Turbulence won't be the main issue though - compressibility will. The slower drop off of flow rate with pipe length in that calculator is probably because (assuming it is calculating compressibility correctly) the flow is choked at the exit, reducing the influence of upstream factors on flow rate.
 

FAQ: How to Calculate Air Flow Through a 1/4 Inch Pipe at 90 PSI?

How does the size of an opening affect the flow of air?

The size of an opening has a direct impact on the flow of air. A larger opening will allow for more air to flow through, while a smaller opening will restrict the amount of air that can pass through.

What causes air to flow through an opening?

Air flow through an opening is caused by differences in air pressure. When there is a difference in pressure between two areas, air will naturally flow from the higher pressure area to the lower pressure area.

How do temperature and humidity affect the flow of air through an opening?

Temperature and humidity can affect the flow of air through an opening by changing the density of the air. Warmer air is less dense, so it will rise and create a lower pressure area, causing air to flow towards it. Higher humidity can also increase the density of the air, making it more difficult for air to flow through an opening.

Does the shape of an opening impact the flow of air?

Yes, the shape of an opening can have an impact on the flow of air. A narrow, elongated opening will cause air to flow faster than a wider opening, as the air has a smaller area to travel through.

What are some factors that can affect the rate of air flow through an opening?

Aside from size, temperature, humidity, and shape, other factors that can affect the rate of air flow through an opening include the presence of obstacles, such as furniture or walls, and the presence of wind or air currents in the surrounding environment.

Similar threads

Back
Top