MHB How to Calculate Arc Length for a 124° Angle in a Circle?

AI Thread Summary
To calculate the arc length for a 124° angle in a circle with a radius of 10 cm, first convert the angle to radians by multiplying by π/180. Using the formula for arc length, s = rθ, substitute the radius and the converted angle. The resulting arc length is approximately 21.8 cm when rounded to the nearest tenth. The discussion also briefly touches on a separate mathematical function but remains focused on the arc length calculation. Understanding the conversion to radians is crucial for accurate computation.
zolton5971
Messages
25
Reaction score
0
A circle has a radius of 10cm. Find the length s of the arc intercepted by a central angle of 124°
.

Do not round any intermediate computations, and round your answer to the nearest tenth.

How do I do this?
 
Mathematics news on Phys.org
You will need the formula:

[box=green]
Arc Length of Circular Arc

The arc-length $s$ of the circular arc, where the radius of curvature is $r$, and the subtended angle is $\theta$ (in radians) is given by:

$$s=r\theta\tag{1}$$[/box]

So, you need to convert the given angle to radians (multiply by $$\frac{\pi}{180^{\circ}}$$), and then plug the given data into (1). What do you find?
 
Got that one thanks!
 
zolton5971 said:
Got that one thanks!

The function f is defined by f(x)=x^2+5

Find f(3z)

How do I find f(3z)

You should have found:

$$s=\frac{62\pi}{9}$$

I am going to move your next question to a new thread. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top