MHB How to calculate binomial (n choose k) coefficients when exponent is negative?

AI Thread Summary
Calculating binomial coefficients for negative integer exponents can be addressed using the binomial series expansion rather than traditional factorial methods. The series for (1 + x)^r allows for the computation of coefficients even when r is negative, as shown in the formulas provided. Specifically, the expansion for (1 + x)^{-r} includes terms that can be derived without encountering undefined factorials. This approach enables the determination of coefficients for expressions like (a + b)^{-2}. Understanding these series is essential for working with negative exponents in binomial expansions.
tommymato
Messages
2
Reaction score
0
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2
 
Mathematics news on Phys.org
tommymato said:
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2

In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{1}{2}\ r\ (r-1) \ x^{2} + \frac{1}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{1}{2}\ r\ (r+1) \ x^{2} + \frac{1}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{r}{2}\ r\ (r-1) \ x^{2} + \frac{r}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{r}{2}\ r\ (r+1) \ x^{2} + \frac{r}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$

... of course for x = -1 and r = 0 using the (1) or (2) is $\displaystyle (1-1)^{0} = 0^{0} = 1$... an happy 2015 and many more years of happiness to those who still believe that $0^{0}$ is an 'indeterminate form '(Happy)...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top