- #1
kalish1
- 99
- 0
How can I calculate the following matrix norm in a Banach Space:
$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$
I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$
and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$
Now, how can I maximize the function $\|Az\|$? I'm not sure.
The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?
Any help would be appreciated.
I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange
$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$
I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$
and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$
Now, how can I maximize the function $\|Az\|$? I'm not sure.
The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?
Any help would be appreciated.
I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange