- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Determine $x^2+y^2+z^2+w^2$ if
$\dfrac{x^2}{2^2-1^2}+\dfrac{y^2}{2^2-3^2}+\dfrac{z^2}{2^2-5^2}+\dfrac{w^2}{2^2-7^2}=1,\\\dfrac{x^2}{4^2-1^2}+\dfrac{y^2}{4^2-3^2}+\dfrac{z^2}{4^2-5^2}+\dfrac{w^2}{4^2-7^2}=1,\\\dfrac{x^2}{6^2-1^2}+\dfrac{y^2}{6^2-3^2}+\dfrac{z^2}{6^2-5^2}+\dfrac{w^2}{6^2-7^2}=1,\\\dfrac{x^2}{8^2-1^2}+\dfrac{y^2}{8^2-3^2}+\dfrac{z^2}{8^2-5^2}+\dfrac{w^2}{8^2-7^2}=1$
-----
-----
Determine $x^2+y^2+z^2+w^2$ if
$\dfrac{x^2}{2^2-1^2}+\dfrac{y^2}{2^2-3^2}+\dfrac{z^2}{2^2-5^2}+\dfrac{w^2}{2^2-7^2}=1,\\\dfrac{x^2}{4^2-1^2}+\dfrac{y^2}{4^2-3^2}+\dfrac{z^2}{4^2-5^2}+\dfrac{w^2}{4^2-7^2}=1,\\\dfrac{x^2}{6^2-1^2}+\dfrac{y^2}{6^2-3^2}+\dfrac{z^2}{6^2-5^2}+\dfrac{w^2}{6^2-7^2}=1,\\\dfrac{x^2}{8^2-1^2}+\dfrac{y^2}{8^2-3^2}+\dfrac{z^2}{8^2-5^2}+\dfrac{w^2}{8^2-7^2}=1$
-----