- #1
Bresden
- 1
- 0
Hi everybody!
I have a problem with the Baker-Campbell-Hausdorf formula in third order approximation. I hope there is anyone who can help me through this calculation!
1. The Problem Statement
All Lie group elements can be written as
[itex]U(\alpha_I)=\exp(i \alpha_I T^I).[/itex]
Proof the Baker-Campbell-Hausdorff formula
[itex]U(\alpha_I) U(\beta_I) = U(\gamma_I),[/itex]
up to the third order.
First Order
[itex]U(\alpha_I) U(\beta_I) = (\mathbb{1} + i \alpha_I T^I)(\mathbb{1} + i \beta_I T^I) =
\mathbb{1} + i(\alpha_I + \beta_I)T^I
\Rightarrow \gamma^{(1)}_I = (\alpha_I + \beta_I)[/itex]
Second Order
[itex]U(\alpha_I) U(\beta_I) = (\mathbb{1} + i \alpha_I T^I - \frac{1}{2} \alpha_I \alpha_J T^I T^J)(\mathbb{1} + i \beta_I T^I - \frac{1}{2} \beta_I \beta_J T^I T^J) =
\mathbb{1} + i(\alpha_I + \beta_I)T^I - \frac{1}{2} \left( \alpha_I \alpha_J + \beta_I \beta_J + 2 \alpha_I \beta_J \right)T^I T^J
= \mathbb{1} + i(\alpha_I + \beta_I)T^I - \frac{1}{2} \left[ (\alpha_I + \beta_I)(\alpha_J + \beta_J)T^I T^J + \alpha_I \beta_J[T^I,T^J] \right]
\Rightarrow \gamma^{(1)}_I = \alpha_I + \beta_I[/itex]
[itex]\Rightarrow \gamma^{(2)}_I = \alpha_I + \beta_I - \frac{1}{2} \alpha_I \beta_J [T^I, T^J][/itex]
Third Order
HOW TO CALCULATE THIS?
THX for every help!
I have a problem with the Baker-Campbell-Hausdorf formula in third order approximation. I hope there is anyone who can help me through this calculation!
1. The Problem Statement
All Lie group elements can be written as
[itex]U(\alpha_I)=\exp(i \alpha_I T^I).[/itex]
Proof the Baker-Campbell-Hausdorff formula
[itex]U(\alpha_I) U(\beta_I) = U(\gamma_I),[/itex]
up to the third order.
First Order
[itex]U(\alpha_I) U(\beta_I) = (\mathbb{1} + i \alpha_I T^I)(\mathbb{1} + i \beta_I T^I) =
\mathbb{1} + i(\alpha_I + \beta_I)T^I
\Rightarrow \gamma^{(1)}_I = (\alpha_I + \beta_I)[/itex]
Second Order
[itex]U(\alpha_I) U(\beta_I) = (\mathbb{1} + i \alpha_I T^I - \frac{1}{2} \alpha_I \alpha_J T^I T^J)(\mathbb{1} + i \beta_I T^I - \frac{1}{2} \beta_I \beta_J T^I T^J) =
\mathbb{1} + i(\alpha_I + \beta_I)T^I - \frac{1}{2} \left( \alpha_I \alpha_J + \beta_I \beta_J + 2 \alpha_I \beta_J \right)T^I T^J
= \mathbb{1} + i(\alpha_I + \beta_I)T^I - \frac{1}{2} \left[ (\alpha_I + \beta_I)(\alpha_J + \beta_J)T^I T^J + \alpha_I \beta_J[T^I,T^J] \right]
\Rightarrow \gamma^{(1)}_I = \alpha_I + \beta_I[/itex]
[itex]\Rightarrow \gamma^{(2)}_I = \alpha_I + \beta_I - \frac{1}{2} \alpha_I \beta_J [T^I, T^J][/itex]
Third Order
HOW TO CALCULATE THIS?
THX for every help!