How to calculate volume of a rotated polar function

In summary, the author found a formula for calculating the volume of a rotated polar function. The correct formula is:\int_{\theta_1}^{\theta_2} \frac{2}{3} \pi r^3 sin(\theta) d\theta. If you look at the 1st image , imagine that the initial line was the line going directly through the sphere. Then you can assume that the sphere is actually a rotation of the polar function r=1 over the initial line. You can calculate the infinitesimally small Volume (dV) by finding the spherical sectors. This would essentially mean that the cones are
  • #1
progressive
6
0
Hello,

I've just found a book which mentions the formula for calculating the volume of a rotated polar function:

[tex]\int_{\theta_1}^{\theta_2} \frac{2}{3} \pi r^3 sin(\theta) d\theta [/tex]
How does one calculate this? In an https://www.physicsforums.com/showthread.php?t=457896", I calculated that the volume would be

[tex]\int_{\theta_1}^{\theta_2} \pi r^2 sin(\theta) d\theta [/tex] if one just added up cones with the side of the cone being the function [tex]f(\theta)[/tex]. This method would be similar to shells, but apparently I'm [tex]\frac{2}{3} r [/tex] off.

If anyone could help me understand how to calculate volume I would be eternally grateful.

Thanks for taking the time to read this!
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Your formula (the second one) is dimensionally an area, not a volume.
 
  • #3
I'm actually working on this as we speak, and realized, of course, that my formula was not correct. However, I decided to go back to spherical sectors.

If you look at the 1st image http://mathworld.wolfram.com/SphericalSector.html" , imagine that the initial line was the line going directly through the sphere. Then you can assume that the sphere is actually a rotation of the polar function r=1 over the initial line. You can calculate the infinitesimally small Volume (dV) by finding the spherical sectors.

That would essentially mean that the cones are infinitely close together (essentially if you had a [tex] d\theta [/tex] separating them), then you could calculate [tex] dV[/tex]. However, it would seem that the h-value for dV would be something like

[tex] r*cos(\theta) - r*cos(\theta + d\theta) [/tex]. That doesn't really make sense in the context of an integral...

Could you please help me set up such an integral?

Thank you so much for your time!
 
Last edited by a moderator:
  • #4
progressive said:
Hello,

I've just found a book which mentions the formula for calculating the volume of a rotated polar function:

[tex]\int_{\theta_1}^{\theta_2} \frac{2}{3} \pi r^3 \sin(\theta) d\theta [/tex]
...

Thanks for taking the time to read this!

The formula you found is the correct formula! I plan to write up the derivation on the other site on which you posted this question.

If [tex]\display r=f(\theta)[/tex], then:

[tex]\display V=\int_{\theta_1}^{\theta_2} \frac{2}{3} \pi \left(f(\theta)\right)^3 \sin(\theta) d\theta \, ,[/tex]

where [tex]\display 0\le\ \theta_1,\,\theta_2\le\pi.[/tex]

 
  • #5
Thank you very much! I look forward to your derivation!
 
  • #6
progressive said:
Thank you very much! I look forward to your derivation!
I've drawn a figure of a narrow sector of a circle. The circle is centered at the origin and has a radius of [tex]\displaystyle r[/tex]. The sector is oriented at an angle of [tex]\displaystyle \theta[/tex] with respect to the positive x-axis and subtends an angle of [tex]\displaystyle \text{d}\theta[/tex]. The figure is an attachment to this post.

As I understand it, your proposal is to obtain a volume element which can be used to calculate the volume of a solid of revolution, where the cross-section of the solid is given in polar coordinates as, [tex]\displaystyle r=f(\theta).[/tex] To accomplish this, we will find the volume of the solid generated by revolving this circular sector about the x-axis.

In the figure, we have an element of area, [tex]\displaystyle \text{d}A={{\text{d}x}\over{\cos \theta}}[/tex] [tex]\cdot {{x\ \text{d}\theta}\over{\cos \theta}}[/tex]. The volume swept out by the element of area, [tex] \text{d}A,[/tex] is:
[tex]\displaystyle 2\pi y\ \text{d}A =[/tex] [tex]\displaystyle 2\pi x\tan\theta\ \text{d}A .[/tex]

This will be integrated over x, from 0 to [tex]\displaystyle r\cos\theta ,[/tex] leaving an expression containing [tex]\displaystyle \text{d}\theta[/tex].

[tex]\displaystyle \text{d}V=[/tex][tex]\displaystyle \int_{0}^{r\cos\theta} 2\pi x\tan\theta\ {{x\,\text{d}x \,\text{d}\theta}\over{\cos^2 \theta}}[/tex]

[tex]\displaystyle =\int_{0}^{r\cos\theta} {{2\pi x^2\sin\theta}\over{\cos^3 \theta}}\ \text{d}x \,{d}\theta[/tex]

[tex]\displaystyle ={{2\pi \sin\theta \,{\text{d}\theta}\over{\cos^3 \theta}}\int_{0}^{r\cos\theta} x^2\text{d}x[/tex]

[tex]\displaystyle ={{2\pi r^3 \sin\theta \,{\text{d}\theta}\over{3 }}[/tex]

Check this for a sphere of radius, R. Integrate over [tex]\displaystyle \theta[/tex] from 0 to [tex]\displaystyle \pi[/tex].

 
Last edited:
  • #7
Your derivation is very interesting! I hope someday I can get to this level of derivation- I've only just completed the BC track and will be entering multivariable calc next semester.

Thank you for you help, on both forums!
 
  • #8
Thank you progressive for posing this question and finding an answer, and thanks SammyS for such a thorough explanation. (I'm new to physicsforums.com, so haven't found your diagram attached to your derivation of the formula.
This is a relief, because I've been mulling out this very problem for several days.

SammyS, how would this formula change if we stated theta as a function of r? Sometimes it's easier/possible to separate variables this way.
 
  • #9
By using this formula, I was able to find the volume of the solid obtained by revolving the cardioid r = a(1+cos(theta)) about the initial line. V = (8/3)*pi*a^3, twice the volume of the sphere r = a.
 

FAQ: How to calculate volume of a rotated polar function

What is a polar function?

A polar function is a mathematical equation that describes a relationship between a point and a fixed origin in the polar coordinate system. It is represented by the variables r and θ, where r represents the distance from the origin and θ represents the angle from a fixed reference line.

How do I rotate a polar function?

To rotate a polar function, you need to apply a transformation to the original function. This transformation involves adding or subtracting a constant value to the angle θ in the polar equation. This will result in a new polar function that is rotated by the specified angle.

What is the formula for calculating the volume of a rotated polar function?

The formula for calculating the volume of a rotated polar function is V = ∫π/2 0 (π(r(θ))^2 dθ, where r(θ) is the polar function and the integral is evaluated between the limits 0 and π/2. This formula is derived from the disk method in calculus.

Can I use a calculator to calculate the volume of a rotated polar function?

Yes, you can use a calculator to calculate the volume of a rotated polar function. However, you will need to make sure that your calculator has the capability to perform integrals. Alternatively, you can use a graphing calculator to graph the polar function and visually estimate the volume of the rotated function.

Are there any special cases when calculating the volume of a rotated polar function?

Yes, there are two special cases when calculating the volume of a rotated polar function. The first is when the polar function intersects the origin, in which case the volume will be equal to 0. The second is when the polar function is entirely above or below the x-axis, in which case the volume can be calculated using a simpler formula: V = π∫b a (r(θ))^2 dθ, where a and b are the limits of integration.

Similar threads

Replies
16
Views
2K
Replies
29
Views
2K
Replies
3
Views
2K
Replies
8
Views
1K
Replies
5
Views
4K
Back
Top