I How to characterise solutions to an unsolved equation

  • I
  • Thread starter Thread starter NotEuler
  • Start date Start date
AI Thread Summary
The discussion revolves around characterizing the dependence of solutions to an equation involving an unknown differentiable function g(x). The equation presented is a complex relationship where the solution's behavior is influenced by g'(x). Participants express uncertainty about how to rigorously define this dependence, particularly when g'(x) is not constant. There is a consensus that more information about constants a, b, c, d, and the function g(x) is needed to determine specific values of x that satisfy the equation. Clarification on terminology and the original equation is also highlighted as necessary for a more precise discussion.
NotEuler
Messages
58
Reaction score
2
TL;DR Summary
Equation a+bx=(cx+dx^2)*g'(x). I don't know g(x) but it is differentiable. What can I say about the dependence of solutions on g(x) and/or g'(x)?
I'm pondering a seemingly simple problem: Say I have an equation with an unknown function in it. For example,
a+bx=(cx+dx^2)*g'(x)
I don't know g(x) but it is differentiable. What can I say about the dependence of solutions on g(x)?
I don't know the function g(x), except that it is differentiable.

If g'(x) is constant, this seems straightforward. What if g'(x) is not a constant? What can I say with certainty and rigor about the dependence of the solution on g'(x) and g(x)?
 
Mathematics news on Phys.org
##g'(x)=\frac{ax+b}{cx+dx^2}##
Now integrate both sides. On the left side you get ##g(x)## plus a constant from the fundamental theorem of calculus. I'll leave it up to you to try integrating the right side (hint: try partial fraction decomposition)
 
Thank you Shredder. I may have phrased my question poorly, and am not sure if your answer really addresses what I intended to say.

What I meant is: there is some value of x that solves the original equation. That value will somehow depend on g'(x). How can that dependence be characterised?

I am not sure how integrating will help. Then I will just have an equation with g(x) on one side and a function of x on the other, and I still have the same problem.

Or perhaps I misunderstand something here.
 
NotEuler said:
Thank you Shredder. I may have phrased my question poorly, and am not sure if your answer really addresses what I intended to say.

What I meant is: there is some value of x that solves the original equation. That value will somehow depend on g'(x). How can that dependence be characterised?

I am not sure how integrating will help. Then I will just have an equation with g(x) on one side and a function of x on the other, and I still have the same problem.

Or perhaps I misunderstand something here.
Generally, the goal of these equations is to solve for the function g(x). More information is then required to get a specific value of x.
 
NotEuler said:
Or perhaps I misunderstand something here.
You ought to be precise about the whole question. Do you have "known" constants ##a, b, c,d## and a "known" function ##g(x)##? And you want to find the specific values of ##x## that solve you equation?
 
With ##x=0##, assuming that ##g'(0) \ne \infty##, we must have ##a=0##. Also, what do you mean by "original equation" in post #3?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top