- #1
Dustinsfl
- 2,281
- 5
$$
X^{(4)}_n - \alpha^4X_n = 0\qquad\qquad X^{(4)}_m - \alpha^4X_m = 0
$$
\begin{alignat*}{7}
X(0) & = & 0 &\qquad\qquad & X'(0) & = & 0\\
X(L) & = & 0 &\qquad\qquad & X''(L) & = & 0
\end{alignat*}
Using a Sturm-Liouville methodology:
Show that the these two equations can be combined in the following manner
$$
X^{(4)}_nX_m - X^{(4)}_mX_n + (\alpha^4_n - \alpha_m^4)X_nX_m = 0
$$
I am not sure how to start this.
X^{(4)}_n - \alpha^4X_n = 0\qquad\qquad X^{(4)}_m - \alpha^4X_m = 0
$$
\begin{alignat*}{7}
X(0) & = & 0 &\qquad\qquad & X'(0) & = & 0\\
X(L) & = & 0 &\qquad\qquad & X''(L) & = & 0
\end{alignat*}
Using a Sturm-Liouville methodology:
Show that the these two equations can be combined in the following manner
$$
X^{(4)}_nX_m - X^{(4)}_mX_n + (\alpha^4_n - \alpha_m^4)X_nX_m = 0
$$
I am not sure how to start this.
Last edited: