- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the matrices $E_{k\ell}\in \mathbb{R}^{2\times 2}$ with $1$ iin the position $(k,\ell)$ and $0$ in the other positions and \begin{equation*}\sigma_0=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}, \ \sigma_1=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, \ \sigma_2=\begin{pmatrix}0&-i\\ i&0\end{pmatrix}, \ \sigma_3=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \ \in \mathbb{C}^{2\times 2}\end{equation*}
We have the bases $\displaystyle{B=\left (E_{11}, \ E_{12}+E_{21}, \ i(E_{12}-E_{21}), \ E_{22}\right )}$ and $\displaystyle{C=\left (\sigma_0, \ldots , \sigma_3\right )}$ of $\mathbb{R}$-vector space \begin{equation*}H:=\left \{\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}\in \mathbb{C}^{2\times 2}: a, b, c, d\in \mathbb{R}\right \}\end{equation*}
Compute for $v\in H$ the coordinate column vectors $v_B$ and $v_C$ and verify that $v_C=A_{\text{id}, B,C}\cdot v_B$. I have done the following:
Let $v\in H$. Then $v=\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}$ for $a, b, c, d\in \mathbb{R}$.
Let $v_B=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $B$ are real matrices, we have that $x,y,z,w\in \mathbb{R}$.
Then \begin{equation*}v=x\cdot E_{11}+y\cdot \left ( E_{12}+E_{21} \right )+z \cdot \left [ i(E_{12}-E_{21})\right ]+ w \cdot E_{22}\end{equation*}
So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \left [ \begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}+\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix} \right ]+z \cdot i\cdot \left [\begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}-\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix}\right ]+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \begin{pmatrix}0& 1 \\ 1 & 0\end{pmatrix}+z \cdot i\cdot \begin{pmatrix}0& 1 \\ -1 & 0\end{pmatrix}+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = \begin{pmatrix}x& 0 \\ 0 & 0\end{pmatrix}+ \begin{pmatrix}0& y \\ y & 0\end{pmatrix}+ \begin{pmatrix}0& z \cdot i \\ -z \cdot i & 0\end{pmatrix}+ \begin{pmatrix}0& 0 \\ 0 & w\end{pmatrix} \\ & = \begin{pmatrix}x& y+z \cdot i \\ y-z \cdot i & w\end{pmatrix} \end{align*}
So, we get:
\begin{equation*}\begin{cases}a=x \\ b+ic=y+iz \\ b-ic = y-iz \\ d=w\end{cases}\ \Rightarrow \ \begin{cases}x=a \\ y=b \\ z=c \\ w=d\end{cases}\end{equation*}
The coordinate column vector of $v$ in respect to the basis $B$ is \begin{equation*}v_B=\begin{pmatrix}a \\ b \\ c \\ d \end{pmatrix}\end{equation*}
Let $v_C=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $C$ are complex matrices, we have that $x,y,z,w\in \mathbb{C}$.
Then \begin{equation*}v=x\cdot \sigma_0+y\cdot \sigma_1+z \cdot \sigma_2+ w \cdot \sigma_3\end{equation*}
So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1&0\\ 0&1\end{pmatrix}+y\cdot \begin{pmatrix}0&1\\ 1&0\end{pmatrix}+z \cdot \begin{pmatrix}0&-i\\ i&0\end{pmatrix}+ w \cdot \begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \\ & = \begin{pmatrix}x&0\\ 0&x\end{pmatrix}+ \begin{pmatrix}0&y\\ y&0\end{pmatrix}+ \begin{pmatrix}0&-z \cdot i\\ z \cdot i&0\end{pmatrix}+ \begin{pmatrix}w&0\\ 0&-w\end{pmatrix} \\ & = \begin{pmatrix}x+w&y-z \cdot i\\ y+z \cdot i&x-w\end{pmatrix} \end{align*}
We get that
\begin{equation*}\begin{cases}a=x+w \\ b+ic=y-iz \\ b-ic = y+iz \\ d=x-w\end{cases}\end{equation*}
The coordinate column vector of $v$ in respect to the basis $C$ is \begin{equation*}v_C=\begin{pmatrix}\frac{a+d}{2} \\ b \\ -c \\ \frac{a-d}{2} \end{pmatrix}\end{equation*}
Is everything correct so far? (Wondering)
How could we compute $A_{\text{id}, B,C}$ ? (Wondering)
We have the matrices $E_{k\ell}\in \mathbb{R}^{2\times 2}$ with $1$ iin the position $(k,\ell)$ and $0$ in the other positions and \begin{equation*}\sigma_0=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}, \ \sigma_1=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}, \ \sigma_2=\begin{pmatrix}0&-i\\ i&0\end{pmatrix}, \ \sigma_3=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \ \in \mathbb{C}^{2\times 2}\end{equation*}
We have the bases $\displaystyle{B=\left (E_{11}, \ E_{12}+E_{21}, \ i(E_{12}-E_{21}), \ E_{22}\right )}$ and $\displaystyle{C=\left (\sigma_0, \ldots , \sigma_3\right )}$ of $\mathbb{R}$-vector space \begin{equation*}H:=\left \{\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}\in \mathbb{C}^{2\times 2}: a, b, c, d\in \mathbb{R}\right \}\end{equation*}
Compute for $v\in H$ the coordinate column vectors $v_B$ and $v_C$ and verify that $v_C=A_{\text{id}, B,C}\cdot v_B$. I have done the following:
Let $v\in H$. Then $v=\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}$ for $a, b, c, d\in \mathbb{R}$.
Let $v_B=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $B$ are real matrices, we have that $x,y,z,w\in \mathbb{R}$.
Then \begin{equation*}v=x\cdot E_{11}+y\cdot \left ( E_{12}+E_{21} \right )+z \cdot \left [ i(E_{12}-E_{21})\right ]+ w \cdot E_{22}\end{equation*}
So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \left [ \begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}+\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix} \right ]+z \cdot i\cdot \left [\begin{pmatrix}0& 1 \\ 0 & 0\end{pmatrix}-\begin{pmatrix}0& 0 \\ 1 & 0\end{pmatrix}\right ]+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = x\cdot \begin{pmatrix}1& 0 \\ 0 & 0\end{pmatrix}+y\cdot \begin{pmatrix}0& 1 \\ 1 & 0\end{pmatrix}+z \cdot i\cdot \begin{pmatrix}0& 1 \\ -1 & 0\end{pmatrix}+ w \cdot \begin{pmatrix}0& 0 \\ 0 & 1\end{pmatrix} \\ & = \begin{pmatrix}x& 0 \\ 0 & 0\end{pmatrix}+ \begin{pmatrix}0& y \\ y & 0\end{pmatrix}+ \begin{pmatrix}0& z \cdot i \\ -z \cdot i & 0\end{pmatrix}+ \begin{pmatrix}0& 0 \\ 0 & w\end{pmatrix} \\ & = \begin{pmatrix}x& y+z \cdot i \\ y-z \cdot i & w\end{pmatrix} \end{align*}
So, we get:
\begin{equation*}\begin{cases}a=x \\ b+ic=y+iz \\ b-ic = y-iz \\ d=w\end{cases}\ \Rightarrow \ \begin{cases}x=a \\ y=b \\ z=c \\ w=d\end{cases}\end{equation*}
The coordinate column vector of $v$ in respect to the basis $B$ is \begin{equation*}v_B=\begin{pmatrix}a \\ b \\ c \\ d \end{pmatrix}\end{equation*}
Let $v_C=\begin{pmatrix}x \\ y \\ z \\ w \end{pmatrix}$ be the coordinate column vector. Since the elements of the basis $C$ are complex matrices, we have that $x,y,z,w\in \mathbb{C}$.
Then \begin{equation*}v=x\cdot \sigma_0+y\cdot \sigma_1+z \cdot \sigma_2+ w \cdot \sigma_3\end{equation*}
So, we have the following:
\begin{align*}\begin{pmatrix}a & b+ic\\ b-ic & d\end{pmatrix}&=x\cdot \begin{pmatrix}1&0\\ 0&1\end{pmatrix}+y\cdot \begin{pmatrix}0&1\\ 1&0\end{pmatrix}+z \cdot \begin{pmatrix}0&-i\\ i&0\end{pmatrix}+ w \cdot \begin{pmatrix}1&0\\ 0&-1\end{pmatrix} \\ & = \begin{pmatrix}x&0\\ 0&x\end{pmatrix}+ \begin{pmatrix}0&y\\ y&0\end{pmatrix}+ \begin{pmatrix}0&-z \cdot i\\ z \cdot i&0\end{pmatrix}+ \begin{pmatrix}w&0\\ 0&-w\end{pmatrix} \\ & = \begin{pmatrix}x+w&y-z \cdot i\\ y+z \cdot i&x-w\end{pmatrix} \end{align*}
We get that
\begin{equation*}\begin{cases}a=x+w \\ b+ic=y-iz \\ b-ic = y+iz \\ d=x-w\end{cases}\end{equation*}
The coordinate column vector of $v$ in respect to the basis $C$ is \begin{equation*}v_C=\begin{pmatrix}\frac{a+d}{2} \\ b \\ -c \\ \frac{a-d}{2} \end{pmatrix}\end{equation*}
Is everything correct so far? (Wondering)
How could we compute $A_{\text{id}, B,C}$ ? (Wondering)