- #1
Ackbach
Gold Member
MHB
- 4,155
- 92
This is problem AP3.7 on page 669 of The Practice of Statistics, 5th AP Ed., by Starnes, Tabor, Yates, and Moore.
A certain candy has different wrappers for various holidays. During Holiday 1, the candy wrappers are 30% silver, 30% red, and 40% pink. During Holiday 2, the wrappers are 50% silver and 50% blue. Forty pieces of candy are randomly selected from the Holiday 1 distribution, and 40 pieces are randomly selected from the Holiday 2 distribution. What are the expected value and standard deviation of the total number of silver wrappers?
Now, I've computed the expected value of silver candies as $40(0.3)+40(0.5)=32$. But I am at a loss to compute the standard deviation. My instinct tells me this is a discrete random variable, in which case I should compute
$$\sigma=\sqrt{\sum_i(x_i-\overline{x})^2 p_i}.$$
But then what are the $x_i$ and $p_i$ values?
A certain candy has different wrappers for various holidays. During Holiday 1, the candy wrappers are 30% silver, 30% red, and 40% pink. During Holiday 2, the wrappers are 50% silver and 50% blue. Forty pieces of candy are randomly selected from the Holiday 1 distribution, and 40 pieces are randomly selected from the Holiday 2 distribution. What are the expected value and standard deviation of the total number of silver wrappers?
Now, I've computed the expected value of silver candies as $40(0.3)+40(0.5)=32$. But I am at a loss to compute the standard deviation. My instinct tells me this is a discrete random variable, in which case I should compute
$$\sigma=\sqrt{\sum_i(x_i-\overline{x})^2 p_i}.$$
But then what are the $x_i$ and $p_i$ values?