MHB How to Compute Standard Deviation in a Mixed Sampling Problem

AI Thread Summary
The discussion revolves around computing the expected value and standard deviation of silver candy wrappers from two holiday distributions. The expected value is calculated as 32 using the formula for a binomial distribution. To find the standard deviation, the variance of each holiday's distribution is computed using the formula for binomial variance, and since the distributions are independent, their variances can be summed. The final standard deviation is derived from the combined variance. The conversation highlights the importance of understanding binomial distributions in mixed sampling problems.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
This is problem AP3.7 on page 669 of The Practice of Statistics, 5th AP Ed., by Starnes, Tabor, Yates, and Moore.

A certain candy has different wrappers for various holidays. During Holiday 1, the candy wrappers are 30% silver, 30% red, and 40% pink. During Holiday 2, the wrappers are 50% silver and 50% blue. Forty pieces of candy are randomly selected from the Holiday 1 distribution, and 40 pieces are randomly selected from the Holiday 2 distribution. What are the expected value and standard deviation of the total number of silver wrappers?

Now, I've computed the expected value of silver candies as $40(0.3)+40(0.5)=32$. But I am at a loss to compute the standard deviation. My instinct tells me this is a discrete random variable, in which case I should compute
$$\sigma=\sqrt{\sum_i(x_i-\overline{x})^2 p_i}.$$
But then what are the $x_i$ and $p_i$ values?
 
Mathematics news on Phys.org
I would think of this as a binomial random variable, since we essentially have two outcomes and are considering each draw to be independent of the rest. For Holiday 1, each draw has a 30% "success" rate, thus a 70% "failure" rate. Same idea for Holiday 2. You found the expected value correctly using the formula for a binomial distribution $E[X]=np$. I think you can continue in this way by using the formula for the variance of a binomial random variable: $np(1-p)$. Also, since Holiday 1 and Holiday 2 are assumed to be independent, we can simply add their variances together to get the combined variance, then find the standard deviation.
 
Hi Ackbach,

The random variable $X$ is the number of silver wrappers.
The possible outcomes are $x_1=0$ up to $x_{81}=80$ silver wrappers with a population size of $n=81$.
The $p_i$ are the corresponding probabilities and for instance $p_{81} = P(80 \text{ silver wrappers}) = 0.3^{40} \cdot 0.5^{40}$.

Since this is about a population instead of a sample the proper symbol for the mean is $\mu$ instead of $\bar x$.
$$\sigma = \sqrt{\sum(x_i - \mu)^2 p_i}$$

As Jameson said, this is the sum of 2 binomial distributions.

When summing distributions, we have:
\begin{cases}
\mu_{_{Y+Z}} &= \mu_{_Y} + \mu_{_Z} \\
\sigma_{_{Y+Z}}^2 &=\sigma_{_Y}^2 + \sigma_{_Z}^2 + 2\sigma_{_Y}\sigma_{_Z}\rho_{_{YZ}}
\end{cases}where $\rho_{_{YZ}}$ is the correlation between $Y$ and $Z$.
 
Thanks very much for your replies, Jameson and I like Serena. They cleared things up immensely in my mind! I was able to obtain the correct answer.

Cheers.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top