How to construct a table of values for Dirichlet characters?

  • Thread starter Math100
  • Start date
  • Tags
    Table
In summary, it is shown that there are 8 Dirichlet characters modulo 16, with the principal character taking a value of 1 for all odd numbers and 0 for even numbers. The values of the other characters can be determined using the formula ##\chi(mn)=\chi(m)\chi(n)## and the fact that ##\chi(n)^{\varphi(k)}=1## when ##(n,k)=1##, resulting in only 2 possible targets for elements of order 2 and 4 possible targets for elements of order 4. The values of these characters can be determined by considering the multiplications within the group of units modulo 16.
  • #1
Math100
802
222
Homework Statement
Construct a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##.
Relevant Equations
A Dirichlet character modulo ## k ## is an arithmetic function ## \chi:\mathbb{N}\rightarrow \mathbb{C} ## satisfying
(1) ## \chi(n+k)=\chi(n), \forall n\in\mathbb{N} ##
(2) ## \chi(mn)=\chi(m)\chi(n), \forall m, n\in\mathbb{N} ##
(3) ## \chi(n)\neq0\Leftrightarrow (n, k)=1 ##.

The principal character modulo ## k ## is the unique Dirichlet character ## \chi_{1} ## such that ## \chi_{1}(n)=1\Leftrightarrow (n, k)=1 ##.

If ## \chi ## is not the principal character ## \chi_{0} ## modulo ## k ##,
then ## \left | \sum_{n\leq x}\chi(n) \right |\leq \varphi(k) ##, for ## x\geq 1 ##.
If ## \chi=\chi_{0} ##, then ## \left | \sum_{n\leq x}\chi(n)-\frac{\varphi(k)}{k}x \right |\leq 2\varphi(k) ##, for ## x\geq 1 ##.
Since ## \varphi(16)=8 ##, it follows that there are ## 8 ## Dirichlet characters modulo ## 16 ##.
 
Physics news on Phys.org
  • #2
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
 
  • Like
Likes PhDeezNutz
  • #3
Office_Shredder said:
I just learned about these now, but maybe you can start by writing down which values of ##n## can be non zero, and what possible values ##\chi(n)## can actually take. I don't think there are that many choices.
The principal character ## \chi_{1}(n)=1 ## if ## (n, k)=1 ##, and ## 0 ## if ## (n, k)>1 ##.
So I think ## \chi_{1}(n)=1 ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ## because if ## n ## is even, then the function would equal to ## 0 ##. But how should I find other values of ## \chi_{2}(n), \chi_{3}(n), ..., \chi_{8}(n) ## for ## n=1, 3, 5, 7, 9, 11, 13, 15 ##?
 
  • #4
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
 
  • Like
Likes PhDeezNutz
  • #5
Office_Shredder said:
Do you know any formula that has to be true for, say ##\chi(1)##? What about ##\chi(3)##?
No, what's the formula for them?
 
  • #6
Math100 said:
No, what's the formula for them?
##\chi(mn)=\chi(m)\chi(n)##. This means ##\chi## is a group homomorphism from the units of ##\mathbb{Z}## mod n to ##\mathbb{C}^x##, the complex numbers minus 0 under multiplication.This has powerful implications. The simplest one is what ##\chi(1)## can be while still satisfying ##\chi(mn)=\chi(m)\chi(n)##. Pick some choices of ##m## and ##n## that might be useful.
 
  • #7
## \chi(n)^{\varphi(k)}=1 ## whenever ## (n, k)=1 ##.
So ## \chi_{i}(3)\in\left \{ 1, -1, i, -i \right \} ##. Same thing for ## \chi_{i}(5), \chi_{i}(7), ..., \chi_{i}(15) ##. But how to determine each value for ## \chi_{i}(n) ##?
 
  • #8
I think you actually get ##\chi(3)^8=1## so it can be any of the 8 roots of unity. Let's say ##\chi(3)=\zeta##
Then you have ##\chi(9)=\chi(3*3)##. Try to figure out what it is in terms of ##\zeta##. Then try adding another factor of 3 and see if you can pin down the next term.
 
  • #9
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
 
  • #10
What is ##\chi(27)##? Don't just write down the first answer you think of and come back, think about it a bit more.

Also, you're still missing the fact that there are 8 choices for ##\chi(3)##.
 
  • #11
That looks promising.
Math100 said:
Since the order doesn't matter, I got ## \chi_{1}(3)=1, \chi_{2}(3)=-1, \chi_{3}(3)=i, \chi_{4}(3)=-i, \chi_{5}(3)=1, \chi_{6}(3)=-1, \chi_{7}(3)=i, \chi_{8}(3)=-i ##. So this means ## \chi_{1}(9)=1, \chi_{2}(9)=1, \chi_{3}(9)=-1, \chi_{4}(9)=-1, \chi_{5}(9)=1, \chi_{6}(9)=1, \chi_{7}(9)=-1, \chi_{8}(9)=-1 ##. Because ## 3^2=9 ##. Is this right? If so, then what about ## \chi(5), \chi(7), \chi(11), \chi(13), \chi(15) ##?
Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
 
Last edited:
  • Like
Likes Math100 and WWGD
  • #12
fresh_42 said:
That looks promising.

Let's have a look at the group we are talking about, namely the group of units of ##\mathbb{Z}_{16}.## This group has ##\varphi (16)=8## elements which are ##G=\{1,3,5,7,9,11,13,15\}.## The elements ##3,5,11,13## are of order four, and ##7,9,15## of order two. Since a Dirichlet character is a group homomorphism into the multiplicative group of complex numbers (see post #6), we have
$$
\chi(k)^2=\chi(k)\cdot \chi(k)=\chi(k\cdot k)=\chi(k^2)=\chi(1)=1\text{ for all }k\in \{7,9,15\},
$$
i.e. only two possible targets ##\pm 1.## We also get
$$
\chi(k)^4=\chi(k^4)=\chi(1)=1\text{ for all }k\in \{3,5,11,13\},
$$
and of course always ##\chi(1)=1.## Complex numbers of order four are only ##\pm i ,## but they can also map onto ##\pm 1## under ##\chi.##

Start with elements of order two. There are only ##2^2## possibilities. Since ##7\cdot 9 = 15,## we only need the values for ##7## and ##9.##

Before you start writing down all other combinations, first write down the multiplications in ##G.## E.g. if you set ##\chi(9)=1## then ##\chi(3)= i ## isn't possible anymore: ##1=\chi(9)\neq\chi(3)\cdot \chi(3)=i \cdot i = -1,## a contradiction.
So the order two elements for ## 7, 9, 15 ## are ## \chi_{1}(7)=1, \chi_{2}(7)=-1, \chi_{2}(7)=1, \chi_{3}(7)=-1, \chi_{4}(7)=1, \chi_{5}(7)=-1, \chi_{6}(7)=1, \chi_{7}(7)=-1, \chi_{8}(7)=1 ##? But what about ## 9, 15 ##?
 
  • #13
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
 
  • Like
Likes Math100
  • #14
fresh_42 said:
You have the choice between ##4## possibilities:
\begin{array}{|c|c|}
\hline \chi(7) & \chi(9) \\
\hline 1 & 1 \\
\hline -1 & 1 \\
\hline 1 & -1 \\
\hline -1 & -1 \\
\hline
\end{array}
Choose one of them, e.g. ##\chi(7)=-1\, , \, \chi(9)=1.## Then ##\chi(15)=\chi(7)\cdot \chi(9)=-1.##

You first need the multiplication table of ##G.##
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 &3 & 5 & 7 & 9 &11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & \ldots & \ldots & \ldots &\ldots \\
\hline 5 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 7 & \ldots & \ldots & \ldots & 15 & \ldots & \ldots &\ldots \\
\hline 9 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 11 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 13 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline 15 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots &\ldots\\
\hline
\end{array}

##\chi(3),\chi(5),\chi(11),\chi(13) \in \{-1,+1,- i , + i \}## which are too many possibilities to check them all. Fortunately, it isn't necessary to check them all. E.g. ##\chi(3)\cdot\chi(3)=\chi(9)## and if we are in the case ##\chi(9)=-1## then ##\chi(3)\in \{\pm i\}## are the only possibilities left. Then make two cases: ##\chi(3)=- i ## that fixes e.g. ##\chi(3)\cdot \chi(9)=\chi(11)= i ## and so on, then consider ##\chi(3)=+ i ## etc.
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
 
  • #15
Math100 said:
So
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline 3 & 9 & 15 & 5 & 11 & 1 & 7 & 13 \\
\hline 5 & 15 & 9 & 3 & 13 & 7 & 1 & 11 \\
\hline 7 & 5 & 3 & 1 & 15 & 13 & 11 & 9 \\
\hline 9 & 11 & 13 & 15 & 1 & 3 & 5 & 7 \\
\hline 11 & 1 & 7 & 13 & 3 & 9 & 15 & 5 \\
\hline 13 & 7 & 1 & 11 & 5 & 15 & 9 & 3 \\
\hline 15 & 13 & 11 & 9 & 7 & 5 & 3 & 1 \\
\hline
\end{array}
?
Yes. You need it to compute ##\chi(n)## in case ##n=a\cdot b.## You have still many cases but I do not see a shortcut. Fix ##\chi(7),\chi(9)## and then all four cases for ##\chi(3)## which might have subcases for ##\chi(11).##
 
  • #16
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
 
  • #17
Math100 said:
At first, I got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{3}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{4}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline \chi_{5}(n) & 1 & 1 & \Idots & 1 & 1 & 1 & \Idots & 1 \\
\hline \chi_{6}(n) & 1 & -1 & \Idots & -1 & 1 & -1 & \Idots & -1 \\
\hline \chi_{7}(n) & 1 & i & \Idots & 1 & -1 & -i & \Idots & -1 \\
\hline \chi_{8}(n) & 1 & -i & \Idots & -1 & -1 & i & \Idots & 1 \\
\hline
\end{array}

But this didn't seem to be right/correct, because I couldn't get the desired result at the end. So I made other attempts and finally got this.
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \chi_{1}(n) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \chi_{2}(n) & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline \chi_{3}(n) & 1 & i & i & 1 & -1 & -i & -i & -1 \\
\hline \chi_{4}(n) & 1 & -i & i & -1 & -1 & i & -i & 1 \\
\hline \chi_{5}(n) & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline \chi_{6}(n) & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline \chi_{7}(n) & 1 & i & -i & -1 & -1 & -i & i & 1 \\
\hline \chi_{8}(n) & 1 & -i & -i & 1 & -1 & i & i & -1 \\
\hline
\end{array}

Also, the second part of the question/problem asked to verify from my table that ## \sum_{\chi \pmod {16}}\chi(3)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=0 ##. So I think ## \sum_{\chi \pmod {16}}\chi(3)=1+(-1)+i+(-i)+1+(-1)+i+(-i)=0 ## and ## \sum_{\chi \pmod {16}}\chi(11)=1+(-1)+(-i)+i+1+(-1)+(-i)+i=0 ##. Is this right/correct?
Looks good.

There are two theorems that you could check:
1.) Characters form a group.
2.) Characters are ##\mathbb{C}-##linear independent.
 
  • Like
Likes Math100
  • #18
Are those Young Tableaux?
 
  • #19
WWGD said:
Are those Young Tableaux?
No.
 

FAQ: How to construct a table of values for Dirichlet characters?

How do I determine the values of a Dirichlet character?

To construct a table of values for a Dirichlet character, you will need to know the modulus and the order of the character. Then, you can use the formula c(n) = e^(2πik/n) to find the values of the character for each integer n, where k is the residue of n modulo the order of the character.

What is the significance of the modulus in constructing a table of values for Dirichlet characters?

The modulus represents the number that the character is defined on. It is a crucial factor in determining the values of the character, as it affects the order and residues used in the formula for c(n). Different moduli will result in different tables of values for the character.

Can a Dirichlet character have infinitely many values?

Yes, a Dirichlet character can have infinitely many values. The values of the character are determined by the modulus and the order of the character, both of which can be infinitely large. Therefore, the number of values for a Dirichlet character can also be infinite.

How are the values of a Dirichlet character related to its properties?

The values of a Dirichlet character are directly related to its properties. For example, the order of the character determines the periodicity of its values, while the modulus affects the number of values and their distribution. Understanding these properties can help in constructing a table of values for a Dirichlet character.

Are there any shortcuts or techniques for constructing a table of values for Dirichlet characters?

Yes, there are some techniques that can be used to simplify the process of constructing a table of values for Dirichlet characters. These include using the properties of primitive characters, using the values of other characters with the same modulus, and using symmetry and periodicity to fill in missing values. However, these techniques may not always be applicable and understanding the basic formula for finding values is still necessary.

Back
Top