- #1
Math100
- 802
- 222
- Homework Statement
- Construct a table of values for all the nonprincipal Dirichlet characters modulo ## 16 ##.
- Relevant Equations
- A Dirichlet character modulo ## k ## is an arithmetic function ## \chi:\mathbb{N}\rightarrow \mathbb{C} ## satisfying
(1) ## \chi(n+k)=\chi(n), \forall n\in\mathbb{N} ##
(2) ## \chi(mn)=\chi(m)\chi(n), \forall m, n\in\mathbb{N} ##
(3) ## \chi(n)\neq0\Leftrightarrow (n, k)=1 ##.
The principal character modulo ## k ## is the unique Dirichlet character ## \chi_{1} ## such that ## \chi_{1}(n)=1\Leftrightarrow (n, k)=1 ##.
If ## \chi ## is not the principal character ## \chi_{0} ## modulo ## k ##,
then ## \left | \sum_{n\leq x}\chi(n) \right |\leq \varphi(k) ##, for ## x\geq 1 ##.
If ## \chi=\chi_{0} ##, then ## \left | \sum_{n\leq x}\chi(n)-\frac{\varphi(k)}{k}x \right |\leq 2\varphi(k) ##, for ## x\geq 1 ##.
Since ## \varphi(16)=8 ##, it follows that there are ## 8 ## Dirichlet characters modulo ## 16 ##.