- #1
Foracle
- 30
- 8
- TL;DR Summary
- How to define expectation value in relativistic quantum mechanics?
In non relativistic quantum mechanics, the expectation value of an operator ##\hat{O}## in state ##\psi## is defined as $$<\psi |\hat{O}|\psi>=\int\psi^* \hat{O} \psi dx$$.
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?