I How to define expectation value in relativistic quantum mechanics?

Foracle
Messages
29
Reaction score
8
TL;DR Summary
How to define expectation value in relativistic quantum mechanics?
In non relativistic quantum mechanics, the expectation value of an operator ##\hat{O}## in state ##\psi## is defined as $$<\psi |\hat{O}|\psi>=\int\psi^* \hat{O} \psi dx$$.
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?
 
Physics news on Phys.org
Go to the momentum space (via Fourier transform) and then define scalar product, probability and expectation value as in "ordinary" QM.
 
Foracle said:
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\psi\right)dx$$
how do we define expectation value of an operator ##\hat{O}## in state ##\psi##?
$$\langle \hat O\rangle=i\int\left(\psi^*\hat O\frac{\partial \psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\hat O\psi\right)dx.$$
works if ##O## does not depend on ##x##. In general,
$$\langle \hat O(x)\rangle=i\int\left(\psi^*\frac{\partial \hat O(x)\psi}{\partial t}-\frac{\partial \psi^*}{\partial t}\hat O(x)\psi\right)dx.$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top