- #1
coquelicot
- 299
- 67
- TL;DR Summary
- Defining ##\nabla \cdot D## or ##\nabla \cdot E## at the interface between dielectrics
It is believed that Maxwell equations (together with other relations depending on the materials) are sufficient to account for any electromagnetic macroscopic effect.
The problem is that, for a Maxwell equation to hold, it must at least be defined.
Consider for example the case of two dielectrics of distinct permittivities, say ##\epsilon_1## and ##\epsilon_2##. We assume for the sake of simplicity that ##D_{conductor 1} = \epsilon_1 E_{conductor 1}## and ##D_{conductor 2} = \epsilon_2 E_{conductor 2},## which already covers a lot of dielectrics.
We also assume that the dielectrics carry no free charge, so Maxwell equation reads ##\nabla \cdot D = 0##.
Let finally restrict ourselves to the electrostatic case.
If the two dielectrics interface at a surface S, then the normal component of E is discontinuous at S, its tangential component is continuous, while the normal component of D is continuous and the tangential components of D are, in general, discontinuous.
For the field E, we could define ##\nabla \cdot E## using the Dirac distribution.
I guess something like that is possible for defining ##\nabla \cdot D##, despite I don't see exactly how (the difference between E and D is that E has only one discontinuous component).
Now, even if a Dirac distribution artifice is possible whenever the interface between two dielectrics is a surface, I see no way to define ##\nabla \cdot E## or ##\nabla \cdot D## whenever three or more dielectrics interface at an edge, or whenever several dielectric interface at a vertex point.
Any idea/knowledge to save Maxwell equations?
The problem is that, for a Maxwell equation to hold, it must at least be defined.
Consider for example the case of two dielectrics of distinct permittivities, say ##\epsilon_1## and ##\epsilon_2##. We assume for the sake of simplicity that ##D_{conductor 1} = \epsilon_1 E_{conductor 1}## and ##D_{conductor 2} = \epsilon_2 E_{conductor 2},## which already covers a lot of dielectrics.
We also assume that the dielectrics carry no free charge, so Maxwell equation reads ##\nabla \cdot D = 0##.
Let finally restrict ourselves to the electrostatic case.
If the two dielectrics interface at a surface S, then the normal component of E is discontinuous at S, its tangential component is continuous, while the normal component of D is continuous and the tangential components of D are, in general, discontinuous.
For the field E, we could define ##\nabla \cdot E## using the Dirac distribution.
I guess something like that is possible for defining ##\nabla \cdot D##, despite I don't see exactly how (the difference between E and D is that E has only one discontinuous component).
Now, even if a Dirac distribution artifice is possible whenever the interface between two dielectrics is a surface, I see no way to define ##\nabla \cdot E## or ##\nabla \cdot D## whenever three or more dielectrics interface at an edge, or whenever several dielectric interface at a vertex point.
Any idea/knowledge to save Maxwell equations?