- #1
tworitdash
- 108
- 26
I have a equation with a double sum. However, one of the variables in one of the sums comes from a stochastic distribution (Gaussian to be specific). How can I get a closed form equivalent of this expression? The [itex]U[/itex] and [itex]T[/itex]are constants in the equation.
$$ \sum_{k = 0}^{N_k-1} \bigg [ \big[ \sum_{i}^{N_i} \cos(\frac{4\pi}{\lambda} u_i k T) - \cos(\frac{4\pi}{\lambda} U k T) \big]^2 + \big[ \sum_{i = 1}^{N_i} \sin(\frac{4\pi}{\lambda} u_i k T) - \sin(\frac{4\pi}{\lambda} U k T) \big]^2 \bigg]$$
$$ u_i \thicksim \mathcal{N}(\mu_{u}, \sigma_{u}) $$
$$ \sum_{k = 0}^{N_k-1} \bigg [ \big[ \sum_{i}^{N_i} \cos(\frac{4\pi}{\lambda} u_i k T) - \cos(\frac{4\pi}{\lambda} U k T) \big]^2 + \big[ \sum_{i = 1}^{N_i} \sin(\frac{4\pi}{\lambda} u_i k T) - \sin(\frac{4\pi}{\lambda} U k T) \big]^2 \bigg]$$
$$ u_i \thicksim \mathcal{N}(\mu_{u}, \sigma_{u}) $$
Last edited: