- #1
Leonhard
- 2
- 0
Homework Statement
In laser physics a common approximation for the time-energy uncertainty is given by.
[tex]\Delta \omega \cdot \tau \geq \approx 2 \pi[/tex]
The problem is to use the Energy-Time Uncertainty relationship to derive a more exact answer than this.
Homework Equations
[tex]\sqrt{\left\langle E^2 \right\rangle \left\langle t^2 \right\rangle} \geq \frac{\hbar}{2}[/tex]
It should be noted that we are supposed to use FWHM for the uncertainties, so the following relationship is supplied.
[tex]\Delta_{FWHM} x = 2\sqrt{2 ln(2)}\sqrt{\left\langle x^2 \right\rangle}[/tex]
The Attempt at a Solution
[tex]\sqrt{\left\langle E^2 \right\rangle \left\langle t^2 \right\rangle} = \frac{\hbar}{2}[/tex]
I substitute
[tex]E = \hbar \omega[/tex]
Giving
[tex]\sqrt{\left\langle \hbar^2 \omega^2 \right\rangle \left\langle t^2 \right\rangle} = \frac{\hbar}{2}[/tex]
I divide with [tex]\hbar[/tex] on both sides
[tex]\sqrt{\left\langle \omega^2 \right\rangle \left\langle t^2 \right\rangle} = \frac{1}{2}[/tex]
We then substitute
[tex]\tau = 2\sqrt{2 ln(2)} \sqrt{\left\langle t^2 \right\rangle}[/tex]
And
[tex]\Delta \omega = 2\sqrt{2 ln(2)} \sqrt{\left\langle \omega^2 \right\rangle}[/tex]
Giving
[tex]\Delta \omega \cdot \tau = 4 ln(2)[/tex]
I don't know where I've done anything wrong, but I would appreciate some help a lot :3