- #1
BOAS
- 553
- 19
Homework Statement
Use the relation ##\langle \vec e^a, \vec e_b \rangle = \delta^a_b## and the Leibniz rule to give an expression for the derivative of a dual frame vector ##\frac{\partial \vec e_b}{\partial x^a}## in terms of the connexion components.
Homework Equations
The Attempt at a Solution
I'm not sure how to do this, but this is what I've got so far:
##\partial_c \langle \vec e^a, \vec e_b \rangle = 0##
##\langle \partial_c \vec e^a, \vec e_b \rangle + \langle \vec e^a, \partial_c \vec e_b \rangle = 0##
##\langle -\Gamma^b_{dc} \vec e^d, \vec e_b \rangle + \langle \vec e^a, \Gamma^d_{bc} \vec e_d \rangle = 0##
##\Gamma^d_{bc}\langle \vec e^a, \vec e_d \rangle - \Gamma^b_{dc} \langle \vec e^d, \vec e_b \rangle = 0##