- #1
jone
- 6
- 0
If the covariance matrix [itex]\mathbf{\Sigma}[/itex] of the multivariate normal distribution is invertible one can derive the density function:
[itex]f(x_1,...,x_n) = f(\mathbf{x}) = \frac{1}{(\sqrt(2\pi))^n\sqrt(\det(\mathbf{\Sigma)}}\exp(-\frac{1}{2}(\mathbf{x}-\mathbf{\mu})^T\mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{\mu}))[/itex]
So, how do I derive the above?
[itex]f(x_1,...,x_n) = f(\mathbf{x}) = \frac{1}{(\sqrt(2\pi))^n\sqrt(\det(\mathbf{\Sigma)}}\exp(-\frac{1}{2}(\mathbf{x}-\mathbf{\mu})^T\mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{\mu}))[/itex]
So, how do I derive the above?