- #1
UrbanXrisis
- 1,196
- 1
Let S be the part of the plane 3x+y+z=4 which lies in the first octant, oriented upward. Find the flux of the vector field F=4i+2j+3k across the surface S.
[tex]\int \int F\cdot dS = \int int \left( -P \frac{\partial g}{\partial x} -Q \frac{\partial g}{\partial y} +R \right) dA[/tex]
[tex]\int \int \left( -4(-3)-2(-1)+4-3x-y \right) dA[/tex]
[tex]\int \int \left( 18-3x-y \right) dA[/tex]
how do I find the ends of integration?
[tex]\int \int F\cdot dS = \int int \left( -P \frac{\partial g}{\partial x} -Q \frac{\partial g}{\partial y} +R \right) dA[/tex]
[tex]\int \int \left( -4(-3)-2(-1)+4-3x-y \right) dA[/tex]
[tex]\int \int \left( 18-3x-y \right) dA[/tex]
how do I find the ends of integration?