- #1
Safinaz
- 260
- 8
- Homework Statement
- How to solve the following wave equation for the scalar ##\phi(t,x)## :
- Relevant Equations
- ##\partial_i \dot{\phi}=0 ##
Where ##\partial_i= \partial/\partial x##. And (.) is the derivative with respect for time ## \partial/\partial t##
I solved by
##
\int d \dot{\phi} = \int d x \to
\dot{\phi} = x+ c_1 \to \int d \phi = \int d t ( x+c_1)
\to \phi = x t + c_1 t + c_2
##
Is this way correct? To determine ##c_2## use initial condition: ##\phi(0,x)=0## that yields ##c_2=0##, but how to get ##c_1## ?
##
\int d \dot{\phi} = \int d x \to
\dot{\phi} = x+ c_1 \to \int d \phi = \int d t ( x+c_1)
\to \phi = x t + c_1 t + c_2
##
Is this way correct? To determine ##c_2## use initial condition: ##\phi(0,x)=0## that yields ##c_2=0##, but how to get ##c_1## ?