How to determine the same moment of inertia in two different ways?

In summary, the conversation discusses a problem involving finding the moment of inertia of an area with respect to the y-axis using different rectangular elements and two different methods. The relevant equation for determining the moment of inertia is shown, but it is noted that x should be squared for y-axis rotation inertia. The two methods are then shown.
  • #1
Tapias5000
46
10
Homework Statement
determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations
## I_x=\int _{ }^{ }y^2dA ##
Imagen2.png

My solution is

<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}I_x=\int_{ }^{ }y^2dA\\
I_x=\int_0^4y^22xdy\ \left[y=4-4x^2,\ \textcolor{#E94D40}{\sqrt{\frac{4-y}{4}}=x}\right]\\
I_x=2\int_0^4y^2\sqrt{\frac{4-y}{4}}dy\ \left(u=\frac{4-y}{4},\ dy=-4du\right)\\
I_x=-8\int_0^4y^2\sqrt{u}du\ \left[u=\frac{4-y}{4},\ \textcolor{#E94D40}{4-4u=y}\right]\\
I_x=-8\int_0^4\left(4-4u\right)^2\sqrt{u}du\\
I_x=-8\int_0^4\left(4^2-2\cdot4\cdot4u+\left(4u\right)^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16-32u+16u^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16\sqrt{u}-32u\sqrt{u}+16u^2\sqrt{u}\right)du\\
I_x=-\frac{32\cdot8}{3}u^{\frac{3}{2}}+\frac{64\cdot8}{5}u^{\frac{5}{2}}-\frac{32\cdot8}{7}u^{\frac{7}{2}}\ \left[\textcolor{#E94D40}{u=\frac{4-y}{4}}\right]\\
I_x=-\frac{32\cdot8}{3}\left(\frac{4-y}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-y}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-y}{4}\right)^{\frac{7}{2}}\begin{bmatrix}4\\
0\end{bmatrix}\\
I_x=\cancel{\textcolor{#E94D40}{-\frac{32\cdot8}{3}\left(\frac{4-4}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-4}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-4}{4}\right)^{\frac{7}{2}}}}\\
-\left(-\frac{32\cdot8}{3}\left(\frac{4-0}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-0}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-0}{4}\right)^{\frac{7}{2}}\right)\\
I_x=19.5\mathit{\text{pulg}}^4\\
\ \end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mrow data-mjx-texclass=ORD/><mrow data-mjx-texclass=ORD/></msubsup><msup><mi>y</mi><mn>2</mn></msup><mi>d</mi><mi>A</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><mn>2</mn><mi>x</mi><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>y</mi><mo>=</mo><mn>4</mn><mo>−</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mo>=</mo><mi>x</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mn>2</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mi>d</mi><mi>y</mi><mo>=</mo><mo>−</mo><mn>4</mn><mi>d</mi><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo>=</mo><mi>y</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><msup><mn>4</mn><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>⋅</mo><mn>4</mn><mo>⋅</mo><mn>4</mn><mi>u</mi><mo>+</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>16</mn><mo>−</mo><mn>32</mn><mi>u</mi><mo>+</mo><mn>16</mn><msup><mi>u</mi><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr
5R0312grRjtCb0_DBMKABiZNFnXFZDNdnBYiWDqWz9Jf=s1600.png

now I am asked for the same result but in this form but I don't know where to start.
Lw0m9UUMPaizX9NMeeRmZaIPDWuUg1pKXf6t720gKKzE=s1600.png
 
Physics news on Phys.org
  • #2
How about
[tex]2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta[/tex]
where ##\sigma## is area mass density of board.
 
Last edited:
  • #3
anuttarasammyak said:
How about
[tex]2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta[/tex]
where ##\sigma## is area mass density of board.
waat, Can you tell me the name of this method?
 
  • #4
I misinterpreted y so
[tex]2\sigma \int_0^1 x^2 y \ \ dx=2\int_0^1 x^2 (4-4x^2) \ \ dx[/tex]
This a way (b).
Tapias5000 said:
Homework Statement:: determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations:: ## I_x=\int _{ }^{ }y^2dA ##
This relevant equation seems inappropriate because x should be squared for y-axis rotation inertia.
For (a)

[tex]2\sigma\int_0^4 dy \int_0^{\frac{\sqrt{4-y}}{2}} x^2 dx [/tex]
 
Last edited:

FAQ: How to determine the same moment of inertia in two different ways?

What is moment of inertia?

Moment of inertia is a measure of an object's resistance to changes in rotational motion. It is calculated based on the mass and distribution of the object's mass around its axis of rotation.

How can the same moment of inertia be determined in two different ways?

The moment of inertia can be determined using two different methods: the direct method, which involves calculating the integral of the mass distribution, and the parallel axis theorem, which involves shifting the axis of rotation to a parallel axis and using the moment of inertia of the object about that axis.

Which method is more accurate in determining the moment of inertia?

Both methods can yield accurate results, but the direct method is generally considered to be more accurate as it takes into account the exact distribution of mass in the object.

Can the same moment of inertia be determined for all objects?

No, the moment of inertia is dependent on the shape and mass distribution of an object. Different objects will have different moments of inertia even if they have the same mass.

How is the moment of inertia used in real-life applications?

The moment of inertia is an important concept in physics and engineering, and it is used in various real-life applications such as designing rotating machinery, analyzing the stability of structures, and understanding the behavior of objects in rotational motion.

Back
Top