- #1
gillgill
- 128
- 0
differentiate
2x/(x+y)=y
Method1:
2x=xy+y^2
d/dx(2x)=d/dx(xy+y^2)
2=y+xy'+2y(y')
y'=(2-y)/(x+2y)
Method2:
2x/(x + y) = y
y' = [2(x + y) - (2x)(1 + y')]/(x + y)^2
[(x + y)^2 + 2x]y' = 2(x + y) - 2x
y' = 2y/[(x + y)^2 + 2x]
Which method is using "implicit" differentiation?
2x/(x+y)=y
Method1:
2x=xy+y^2
d/dx(2x)=d/dx(xy+y^2)
2=y+xy'+2y(y')
y'=(2-y)/(x+2y)
Method2:
2x/(x + y) = y
y' = [2(x + y) - (2x)(1 + y')]/(x + y)^2
[(x + y)^2 + 2x]y' = 2(x + y) - 2x
y' = 2y/[(x + y)^2 + 2x]
Which method is using "implicit" differentiation?