- #1
LAHLH
- 409
- 2
Hi,
I have the integral:
[tex] \int\,\frac{d^4 l}{(2\pi)^4)} \frac{\partial}{\partial l^{\beta}} f_{\alpha}(l)[/tex]
Now apparently this can be written (using a Wick rotation and converting to a surface integral) as:
[tex] i \lim_{l\to\infty}\int\,\frac{\mathrm{d}S_{\beta}}{(2\pi)^4}\,f_{\alpha}(l) [/tex] where [tex]\mathrm{d}S_{\beta}=l^2 l_{\beta} d\Omega[/tex] is a surface-area element and [tex]d\Omega[/tex] is the differential solid angle in 4d.
Can anyone see how exactly? (if context is needed this in (75.41) of Srednicki's QFT available free online)
I have the integral:
[tex] \int\,\frac{d^4 l}{(2\pi)^4)} \frac{\partial}{\partial l^{\beta}} f_{\alpha}(l)[/tex]
Now apparently this can be written (using a Wick rotation and converting to a surface integral) as:
[tex] i \lim_{l\to\infty}\int\,\frac{\mathrm{d}S_{\beta}}{(2\pi)^4}\,f_{\alpha}(l) [/tex] where [tex]\mathrm{d}S_{\beta}=l^2 l_{\beta} d\Omega[/tex] is a surface-area element and [tex]d\Omega[/tex] is the differential solid angle in 4d.
Can anyone see how exactly? (if context is needed this in (75.41) of Srednicki's QFT available free online)