I How to ensure an equation is dimensionless when it includes "Debye"

AI Thread Summary
To determine if an expression is dimensionless, it is essential to analyze the units involved, particularly when dealing with the Debye term. The Debye unit, related to the electric dipole moment, can be expressed in terms of cgs units, where 1 Debye equals 1 Franklin times cm. By breaking down the units, the expression (Debye^2)(s^2)/(cm^5)(g) simplifies to a dimensionless form, confirming correctness. The calculation shows that the units cancel out to yield a value of 1, indicating the expression is indeed dimensionless. Understanding these unit conversions is crucial for verifying dimensional analysis in equations.
bumblebee77
Messages
56
Reaction score
2
TL;DR Summary
Can anyone please help me figure out how to break down "Debye" into base units so that I can check if an expression is dimensionless in the CGS system?
I am trying to check if an expression is dimensionless. If it is, then I have done things correctly. However, I am stuck on how to deal with a (Debye^2) term. How can I break it down to find out if it cancels out with the other units I have left? I know this is probably a trivial question, but just cannot figure it out.

I have this ("^2" means "squared"):

(Debye^2) (s^2) / (cm^5) g
 
Physics news on Phys.org
An expression is of course dimensionless in any system of units. It's the cgs-unit for the electric dipole moment having the dimension Franklin times cm. Now ##1 \text{Fr} =1 \text{statC}=1 \sqrt{\text{g} \; \text{cm}^3/\text{s}^2}##. So ##\text{Debye}^2 \text{s}^2/(\text{cm}^5 \text{g})=1 \text{g} \; \text{cm}^5/(\text{cm}^5 \; \text{g})=1## 👍
 
  • Love
Likes bumblebee77
vanhees71 said:
An expression is of course dimensionless in any system of units. It's the cgs-unit for the electric dipole moment having the dimension Franklin times cm. Now ##1 \text{Fr} =1 \text{statC}=1 \sqrt{\text{g} \; \text{cm}^3/\text{s}^2}##. So ##\text{Debye}^2 \text{s}^2/(\text{cm}^5 \text{g})=1 \text{g} \; \text{cm}^5/(\text{cm}^5 \; \text{g})=1## 👍
@vanhees71, thank you so much. I just could not get my head around this. Really appreciate it. I voted you up and if there's any other way I can give you credit, just let me know.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Does Poisson's equation hold due to vector potential cancellation?'
Imagine that two charged particles, with charge ##+q##, start at the origin and then move apart symmetrically on the ##+y## and ##-y## axes due to their electrostatic repulsion. The ##y##-component of the retarded Liénard-Wiechert vector potential at a point along the ##x##-axis due to the two charges is $$ \begin{eqnarray*} A_y&=&\frac{q\,[\dot{y}]_{\mathrm{ret}}}{4\pi\varepsilon_0 c^2[(x^2+y^2)^{1/2}+y\dot{y}/c]_{\mathrm{ret}}}\tag{1}\\...
Back
Top