- #1
- 1,752
- 143
Homework Statement
Evaluate the integral [tex]\int {\int\limits_R {\left( {x + y} \right)\,dA} } [/tex] where R is the region that lies to the left of the y-axis between the circles [tex]x^2 + y^2 = 1[/tex] and [tex]x^2 + y^2 = 4[/tex] by changing to polar coordinates.
Homework Equations
x=r cos theta
y=r sin theta
The Attempt at a Solution
my effort:
[tex]\begin{array}{l}
r_{inner} = \sqrt 1 = 1,\,\,r_{outer} = \sqrt 4 = 2 \\
R = \left\{ {\left( {r,\theta |1 \le r \le 4,\,\frac{{3\pi }}{2}\,\theta \le \pi } \right)} \right\} \\
x = r\cos \left( \theta \right),\,\,\,y = r\sin \left( \theta \right) \\
\int\limits_1^2 {\int\limits_{\pi /2}^{3\pi /2} {\left( {r\cos \left( \theta \right) + r\sin \left( \theta \right)} \right)\,d\theta \,dr} } \\
\end{array}[/tex]
The solution shows an extra instance of r in the integral. If the original question is for (x+y) then why isn't it simply r cos + r sin, rather than r(r cos + r sin)?