- #1
juantheron
- 247
- 1
If $f(x)$ is a invertible function such that $f(x)+f(-x) = 2a\;,$ Then $\displaystyle \int_{a-x}^{a+x}f^{-1}(t)dt$
$\bf{My\; Try::}$ Using Integration by parts...
$\displaystyle \int_{a-x}^{a+x}f^{-1}(t)dt = \left[f^{-1}(t)\cdot t \right]_{a-x}^{a+x}-\int_{a-x}^{a+x}\frac{d}{dt}\left(f^{-1}(t)\right)\cdot tdt$
Now I did not understand how can we solve it.
Help me
Thanks
$\bf{My\; Try::}$ Using Integration by parts...
$\displaystyle \int_{a-x}^{a+x}f^{-1}(t)dt = \left[f^{-1}(t)\cdot t \right]_{a-x}^{a+x}-\int_{a-x}^{a+x}\frac{d}{dt}\left(f^{-1}(t)\right)\cdot tdt$
Now I did not understand how can we solve it.
Help me
Thanks