How to Evaluate Trigonometric Cosine Sums Manually?

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    2015
In summary, to evaluate cosine values without a calculator, you can use the unit circle, trigonometric identities, or Taylor series expansion. The unit circle method involves drawing a circle with a radius of 1 and using the coordinates of a given angle to find its cosine value. The trigonometric identity method involves using the Pythagorean and double angle identities to simplify the cosine value. The Taylor series expansion approximates cosine values with high accuracy. Some tips for quickly evaluating cosine values include memorizing common values, using symmetry properties, and practicing mental math strategies.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Evaluate $\cos 5^{\circ}+\cos 77^{\circ}+\cos 149^{\circ}+\cos 221^{\circ}+\cos 293^{\circ}$ without the help of calculator.

_______________________________________________________________________________________________________
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
Congratulations to kaliprasad for his correct solutions::)

Using $\cos\,A + \cos\,B= 2\cos\dfrac{A+B}{2} \cos\dfrac{A-B}{2}\dots(1)$, we have

$\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,185^\circ \cos\,108^\circ = 2 (- \cos\,5^\circ)(-\cos \,72^\circ)$

or $\cos\,293^\circ + \cos\,77^\circ = 2 \cos\,5^\circ \cos \,72^\circ\dots(2) $

further from (1)

$\cos\,221^\circ + \cos\,149^\circ = 2 \cos\,185^\circ \cos\,36^\circ = 2 (- \cos\,5^\circ)(\cos \,36^\circ)$

or $\cos\,221^\circ + \cos\,149^\circ = - 2 \cos\,5^\circ\cos \,36^\circ \dots(3)$

from (2) and (3) and adding $\cos\,5^\circ$

we get
$ \cos\,5^\circ + \cos\,77^\circ+ \cos\,149^\circ+ \cos\,221^\circ+ \cos\,293^\circ$
= $ \cos\,5^\circ + 2 \cos\,5^\circ \cos\,72^\circ -2 \cos\,5^\circ \cos\,36^\circ$
= $ \cos\,5^\circ ( 1 + 2 (\cos\,72^\circ - \cos\,36^\circ))$
= $ \cos\,5^\circ ( 1 - 2 * 2 (\sin \,54^\circ \sin \,18^\circ))$ using $\cos\,A - \cos\,B= 2\sin \dfrac{A+B}{2} \sin \dfrac{A-B}{2}$
= $\cos \,5^\circ( 1 - 4\dfrac{ \sin\, 2* 54^\circ}{2 * \cos\,54^\circ}\dfrac{ \sin\, 2* 18^\circ}{2 * \cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 108 ^\circ}{\cos\,54^\circ}\dfrac{ \sin\, 36^\circ}{\cos\,18^\circ})$
= $\cos \,5^\circ( 1 - \dfrac{ \sin\, 72 ^\circ}{\sin\,36^\circ}\dfrac{ \sin\, 36^\circ}{\sin \,72^\circ})$
= $\cos \,5^\circ( 1 - 1)$
= 0
 

FAQ: How to Evaluate Trigonometric Cosine Sums Manually?

How do I evaluate cosine values without a calculator?

To evaluate cosine values without a calculator, you can use the unit circle, trigonometric identities, or Taylor series expansion.

What is the unit circle method for evaluating cosine values?

The unit circle method involves drawing a circle with a radius of 1 and labeling the points on the circle with their corresponding cosine values. Then, you can use the coordinates of a given angle to find its cosine value.

Can you explain the trigonometric identity method for evaluating cosine values?

The trigonometric identity method involves using the Pythagorean identity (sin^2x + cos^2x = 1) and the double angle identity (cos2x = cos^2x - sin^2x) to simplify the cosine value of a given angle.

How does the Taylor series expansion help in evaluating cosine values?

The Taylor series expansion is a mathematical series that approximates a function using its derivatives. By using the Taylor series for cosine, you can evaluate cosine values to a high degree of accuracy without a calculator.

Are there any tips for quickly evaluating cosine values without a calculator?

Some tips for quickly evaluating cosine values include memorizing common cosine values for basic angles (0°, 30°, 45°, 60°, 90°), using symmetry properties (e.g. cos(180°-x) = -cosx), and practicing mental math strategies such as rounding and estimation.

Back
Top