- #1
elessar_telkontar
- 16
- 0
I'm trying to demonstrate the following proposition:
Let [tex]\vec{\alpha}(s)[/tex] be a natural parametrization of an arc C. Then:
[tex]\vec{\alpha}(s+h)=\vec{\alpha}(s)+\left(h-\frac{\kappa^2h^3}{6}\right)\hat{t}+\frac{1}{2}\left(\kappa h^2+\frac{\left(\partial_s\kappa\right)h^3}{3}\right)\hat{n}+\frac{1}{6}\kappa\tau h^3 \hat{b}+O(h^4)[/tex]
where [tex]\kappa[/tex] is the curvature, [tex]\tau[/tex] is the torsion, [tex]\hat{t}[/tex] is the unit tangent vector, [tex]\hat{b}[/tex] is the unit binormal vector and [tex]\hat{n}[/tex] is the unit normal vector.
I understand this is demonstrated by expanding [tex]\vec{\alpha}(s+h)[/tex] in Taylor series. However, I don't know how to expand a vectorial function in Taylor series. Obviously, after expanding it's only matter of applying the Frenet ecuations to the derivatives of [tex]\vec{\alpha}(s)[/tex]. Then please help me saying:
HOW TO EXPAND THE VECTORIAL FUNCTION IN ORDEN TO GET THE RESULT?.
Let [tex]\vec{\alpha}(s)[/tex] be a natural parametrization of an arc C. Then:
[tex]\vec{\alpha}(s+h)=\vec{\alpha}(s)+\left(h-\frac{\kappa^2h^3}{6}\right)\hat{t}+\frac{1}{2}\left(\kappa h^2+\frac{\left(\partial_s\kappa\right)h^3}{3}\right)\hat{n}+\frac{1}{6}\kappa\tau h^3 \hat{b}+O(h^4)[/tex]
where [tex]\kappa[/tex] is the curvature, [tex]\tau[/tex] is the torsion, [tex]\hat{t}[/tex] is the unit tangent vector, [tex]\hat{b}[/tex] is the unit binormal vector and [tex]\hat{n}[/tex] is the unit normal vector.
I understand this is demonstrated by expanding [tex]\vec{\alpha}(s+h)[/tex] in Taylor series. However, I don't know how to expand a vectorial function in Taylor series. Obviously, after expanding it's only matter of applying the Frenet ecuations to the derivatives of [tex]\vec{\alpha}(s)[/tex]. Then please help me saying:
HOW TO EXPAND THE VECTORIAL FUNCTION IN ORDEN TO GET THE RESULT?.
Last edited: