- #1
Dustinsfl
- 2,281
- 5
For all z inside of C (C the unit circle oriented counterclockwise),
$$
f(z) = \frac{1}{2\pi i}\int_C \frac{g(u)}{u-z} du
$$
where $g(u) = u^7$ is a continuous function and $f$ is analytic in C. Describe $f$ in C in terms of a power series.
$\displaystyle f(z) = \frac{1}{2\pi i}\int_C \frac{u^7}{u-z} du$ I am confused with what I am supposed to do. I know it says describe $f$ in terms of a power series.
$$
f(z) = \frac{1}{2\pi i}\int_C \frac{g(u)}{u-z} du
$$
where $g(u) = u^7$ is a continuous function and $f$ is analytic in C. Describe $f$ in C in terms of a power series.
$\displaystyle f(z) = \frac{1}{2\pi i}\int_C \frac{u^7}{u-z} du$ I am confused with what I am supposed to do. I know it says describe $f$ in terms of a power series.