MHB How to Express Vectors of a Regular Hexagon in Terms of Given Components?

AI Thread Summary
The discussion focuses on expressing the vectors of a regular hexagon in terms of given components, specifically $\vec{AB}$, $\vec{CD}$, and $\vec{EC}$. It clarifies that $\vec{b}$ represents the vector $\overrightarrow{BC}$ and $2\vec{a}$ represents $\overrightarrow{FC}$. The expressions derived are $\vec{AB} = \vec{a}$, $\vec{CD} = \vec{b} - \vec{a}$, and $\vec{EC} = 2\vec{a} - \vec{b}$. Participants also discuss the potential confusion around the notation used for vectors. Ultimately, the problem is recognized as straightforward with proper geometric understanding.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
ABCDEF is a regular hexagon with $\vec {BC}$ represents $\underline {b}$ and $\vec {FC}$ represents 2$\underline {a}$. Express, vector
$\vec {AB}$, $\vec {CD}$ and $\vec {EC}$ in terms of $\underline {a}$ and $\underline {b}$.

Before I start, I want to ask if we need to redefined $\underline {b}$ and 2$\underline {a}$? I mean, let $\underline {b}$ as

$$\begin{pmatrix} m \\0 \end{pmatrix}$$.

Thanks.
 
Mathematics news on Phys.org
You don't have to express $\underline{a}$ and $\underline{b}$ using their coordinates, though it's possible to get the answer that way as well. Suppose $\underline{a}=(k,l)$ and $\underline{b}=(m,0)$ and you express, say, $\vec{AB}$ using k, l and m. The difficulty is that you need express $\vec{AB}$ as a combination of specifically $(k,l)$ and $(m,0)$, not just as some expression of k, l and m.

It is clear that $\vec{EC}=\vec{FB}=\vec{FC}-\vec{BC}=2\underline{a}-\underline{b}$. To get a geometric intuition about the regular hexagon you can also look at this page.
 
Hello, anemone!

I don't understand the notation $\underline{b}$.
If $\underline{b}$ represents $\overrightarrow{BC}$, isn't $b$ also a vector?

$ABCDEF\text{ is a regular hexagon with }\vec{b} = \overrightarrow {BC}\text{ and }2\vec{a} = \overrightarrow{FC} $

$\text{Express vectors }\overrightarrow{AB},\;\overrightarrow{CD},\; \overrightarrow{EC}\text{ in terms of }\vec{a}\text{ and }\vec{b}.$
Code:
          A       B
          * - - - *
         / \     / \
        /   \   /   \ b
       /  a  \ /  a  \
    F * - - - * - - - * C
       \     / \     /
        \   /   \   /
         \ /     \ /
          * - - - *
          E       D

$\overrightarrow{AB} \:=\:\vec{a}$

$\overrightarrow{CD} \:=\:\vec{b} - \vec{a}$

$\overrightarrow{EC} \:=\:2\vec{a} - \vec{b}$
 
Evgeny.Makarov said:
You don't have to express $\underline{a}$ and $\underline{b}$ using their coordinates, though it's possible to get the answer that way as well. Suppose $\underline{a}=(k,l)$ and $\underline{b}=(m,0)$ and you express, say, $\vec{AB}$ using k, l and m. The difficulty is that you need express $\vec{AB}$ as a combination of specifically $(k,l)$ and $(m,0)$, not just as some expression of k, l and m.

It is clear that $\vec{EC}=\vec{FB}=\vec{FC}-\vec{BC}=2\underline{a}-\underline{b}$. To get a geometric intuition about the regular hexagon you can also look at this page.

Got it. Thanks, Evgeny.Makarov.
Maybe I'm just trying too hard...and not knowing that I'm actually trying to complicate the simple problem.

---------- Post added at 06:05 AM ---------- Previous post was at 05:59 AM ----------

soroban said:
I don't understand the notation $\underline{b}$.
If $\underline{b}$ represents $\overrightarrow{BC}$, isn't $b$ also a vector?

I had the same reaction as you when I first read the problem!
Anyway, thanks, Soroban.
Now I fully understand with the help of the diagram and it really is as simple as that.:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top