- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $t\in \mathbb{R}$ and the vectors $$v_1=\begin{pmatrix}
0\\
1\\
-1\\
1
\end{pmatrix}, v_2=\begin{pmatrix}
t\\
2\\
0\\
1
\end{pmatrix}, v_3=\begin{pmatrix}
2\\
2\\
2\\
0
\end{pmatrix}$$ in $\mathbb{R}^4$.
I want to determine a maximal linearly independent subset of $\{v_1, v_2, v_3\}$ and to extend these to a basis of $\mathbb{R}^4$.
I have done the following:
$$\begin{pmatrix}
0 & t & 2 \\
1 & 2 & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 0 & 2t-2 \\
0 & 0 & 0
\end{pmatrix}$$
If $t\neq 1$ we get the following system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ t\lambda_2+2\lambda_3=0 \\ (2t-2)\lambda_3=0$$
So, $\lambda_1=\lambda_2=\lambda_3=0$ and so the vectors are linearly independent.
If $t=1$ we get the system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ \lambda_2+2\lambda_3=0=0$$
So, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2, -2, 1), \lambda_3\in \mathbb{R}$.
Therefore, $v_3=-2v_1+2v_2$ and $v_1$ and $v_2$ are linearly independent. Is everything correct so far? (Wondering)
So do we get a different maximal linearly independent subset for $t=1$ and a different for $t\neq 1$ ? (Wondering) So, do we have to take cases for $t$ to extend the vectors to a basis? (Wondering)
Let $t\in \mathbb{R}$ and the vectors $$v_1=\begin{pmatrix}
0\\
1\\
-1\\
1
\end{pmatrix}, v_2=\begin{pmatrix}
t\\
2\\
0\\
1
\end{pmatrix}, v_3=\begin{pmatrix}
2\\
2\\
2\\
0
\end{pmatrix}$$ in $\mathbb{R}^4$.
I want to determine a maximal linearly independent subset of $\{v_1, v_2, v_3\}$ and to extend these to a basis of $\mathbb{R}^4$.
I have done the following:
$$\begin{pmatrix}
0 & t & 2 \\
1 & 2 & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 0 & 2t-2 \\
0 & 0 & 0
\end{pmatrix}$$
If $t\neq 1$ we get the following system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ t\lambda_2+2\lambda_3=0 \\ (2t-2)\lambda_3=0$$
So, $\lambda_1=\lambda_2=\lambda_3=0$ and so the vectors are linearly independent.
If $t=1$ we get the system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ \lambda_2+2\lambda_3=0=0$$
So, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2, -2, 1), \lambda_3\in \mathbb{R}$.
Therefore, $v_3=-2v_1+2v_2$ and $v_1$ and $v_2$ are linearly independent. Is everything correct so far? (Wondering)
So do we get a different maximal linearly independent subset for $t=1$ and a different for $t\neq 1$ ? (Wondering) So, do we have to take cases for $t$ to extend the vectors to a basis? (Wondering)