- #1
asmmanikanda
- 5
- 0
AB and DC not parallel line., AB=55,BC=65,DC=76,DA=48
Ax=28,xD=20,By=37,yC=28
How to find length of xy?
Klaas van Aarsen said:If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.
skeeter said:Not a trapezium ... OP stated that AB is not parallel to DC.
OK sir. If trapezium mean how to find the length of xy?Klaas van Aarsen said:Ah okay... then we have too much freedom I think... and line x-y won't have a unique length.
Klaas van Aarsen said:Hi asmmanikanda, welcome to MHB!
If I draw your trapezium to scale, I get the following diagram, which looks rather different from yours.
\begin{tikzpicture}[scale=1.5,font=\Large]
\path[orange] (137:4.8) coordinate[label=A] (A) -- ++(5.5,0) coordinate[label=B] (B) -- ++(-30:6.5) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (137:2.0) coordinate[label=left:x] (X) (B) ++(-30:3.7) coordinate[label=right:y] (Y);
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {55} (B) -- node[above right] {65} (C) -- node[below] {76} (D) -- node[below left] {48} (A);
\path[purple] (D) -- node[above right] {20} (X) -- node[above right] {28} (A) (C) -- node[below left] {28} (Y) -- node[below left] {37} (B);
\end{tikzpicture}
Can you confirm that this is the intended diagram?
Is there perhaps a typo?
Image is in not to scale. 1. How to find length of xy if AB And CD is parallel ?anemone said:Can you post the original question here? If it has a diagram in the question, you can take a picture of it and upload it here, so we can get a better idea of what is being asked. :)
Can you explain step by step till answer plsKlaas van Aarsen said:We can divide the quadrilateral into triangles like this.
\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}
\def\angleDelta{80}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}
\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);
\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);
\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};
\end{tikzpicture}
Now we can repeatedly apply the cosine rule to find the various sides and angles.
The general cosine rule is:
$$c^2=a^2+b^2-2ab\cos\alpha \tag 1$$
And we can invert it to find the angle:
$$\alpha=\cos^{-1}\left(\frac{a^2+b^2-c^2}{2ab} \right) \tag 2$$
The length XY depends on the angle $\delta$, and its formula form is rather long, so I'm choosing not to write it out at this time.
If we have the constraint that we have a trapezium, then we have $\beta + \gamma = 180^\circ$ due to so called Z-angles.
\begin{tikzpicture}[scale=0.15,font=\Large,
declare function={
sideFromCos(\cosalpha,\b,\c) = {sqrt((\b)^2 + (\c)^2 - 2*(\b)*(\c)*\cosalpha)};
cosFromSides(\a,\b,\c) = {((\a)^2 + (\b)^2 - (\c)^2) / (2 * (\a) * (\b))};
}
]
\usetikzlibrary{angles,quotes}
\def\angleDelta{137}
\def\AB{55}
\def\BC{65}
\def\CD{76}
\def\AD{48}
\def\AX{28}
\def\DX{20}
\def\BY{37}
\def\CY{28}
\def\AC{sideFromCos(cos(\angleDelta), \AD, \CD)}
\def\CX{sideFromCos(cos(\angleDelta), \DX, \CD)}
\def\angleBeta{acos(cosFromSides(\AB, \BC, \AC))}
\def\angleZeta{acos(cosFromSides(\CD/10, \AC/10, \AD/10))}
\def\angleEta{acos(cosFromSides(\AC/10, \BC/10, \AB/10))}
\def\angleGamma{(\angleZeta+ \angleEta)}
\def\angleAlpha{360-\angleBeta-\angleGamma-\angleDelta}
\def\angleEpsilon{acos(cosFromSides(\CD/10, \CX/10, \DX/10))}
\path[orange] (\angleDelta:\AD) coordinate[label=A] (A) -- ++({\angleAlpha+\angleDelta-180}:\AB) coordinate[label=B] (B) -- (\CD,0) coordinate[label=below:C] (C) -- (0,0) coordinate[label=below: D] (D);
\path[red] (\angleDelta:\DX) coordinate[label=left:X] (X) (C) ++({180-\angleGamma}:\CY) coordinate[label=right:Y] (Y);
\draw[help lines] (C) -- +({180-\angleZeta}:{\AC});
\draw[help lines] (C) -- +({180-\angleEpsilon}:{\CX});
\draw[black, ultra thick] (A) -- (B) -- (C) -- (D) -- cycle;
\draw[orange, ultra thick] (X) -- (Y);
\path[green!70!black] (A) -- node[above] {\AB} (B) -- node[above right] {\BC} (C) -- node[below] {\CD} (D) -- node[below left] {\AD} (A);
\path[purple] (D) -- node[above right] {\DX} (X) -- node[above right] {\AX} (A) (C) -- node[ left ] {\CY} (Y) -- node[ left ] {\BY} (B);
\pic [draw, "$\delta$", angle radius=1cm, angle eccentricity=0.6] {angle = C--D--A};
\pic [draw, "$\beta$", angle radius=1cm, angle eccentricity=0.6] {angle = A--B--C};
\pic [draw, "$\gamma$", angle radius=1cm, angle eccentricity=0.7] {angle = B--C--D};
\pic [draw, "$\zeta$", angle radius=1.5cm, angle eccentricity=1.15] {angle = A--C--D};
\pic [draw, "$\eta$", angle radius=1.3cm, angle eccentricity=1.15] {angle = B--C--A};
\pic [draw, "$\epsilon$", angle radius=2.2cm, angle eccentricity=1.15] {angle = X--C--D};
\end{tikzpicture}
Working through the cosine rules gives us then that $\delta \approx 137^\circ$, $\gamma \approx 30^\circ$, and $XY\approx 66.4$.
To find the length of a line in a quadrilateral, you can use the Pythagorean theorem or the distance formula. Both of these methods involve using the coordinates of the quadrilateral's vertices to calculate the length of the line.
No, in order to find the length of a line in a quadrilateral, you need to know the coordinates of at least two of its vertices. Without this information, it is not possible to accurately calculate the length of the line.
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In a quadrilateral, you can use this theorem to find the length of a line by treating it as the hypotenuse of a right triangle and using the coordinates of the vertices to calculate the lengths of the other two sides.
The distance formula is a mathematical formula used to calculate the distance between two points in a coordinate plane. To find the length of a line in a quadrilateral using this formula, you would first identify the coordinates of the two endpoints of the line. Then, you would plug these coordinates into the distance formula to calculate the length of the line.
No, the length of a line in a quadrilateral cannot be negative. Length is a measure of distance, which is always a positive value. If you use the distance formula or the Pythagorean theorem to calculate the length of a line in a quadrilateral, the result will always be a positive value.