- #1
Giovanni1
- 1
- 0
Hi guys.
I have the following equilibrium equation from which I want to extract \(\displaystyle \d{\theta}{\nu}\)
\(\displaystyle z+\theta m(\theta)[\,\frac{\int_{0}^{n^*} \,W(n)g(n)dn+h(n^{*})W(n^{*})G^{*}}{1-(1-h(n^{*}))G^{*}}-U\,]=-c+m(\theta)J'(0)\)
Where \(\displaystyle \nu, z, c, n, r, \delta, \xi\) are parameters, m(.), w(.) and h(.) are functions, and G(.) is a CDF. W(n), J(n) and U are Bellman equations of the following form:
\(\displaystyle (r+\delta+\xi)W(n)=w(n)+[m(\theta)-\delta n]W'(n)+(\delta+\xi)U
\)
\(\displaystyle (r+\delta)J(n)=F(n)+\nu-nw(n)+max\{0;-c+m(\theta)J'(n)\}-\delta nJ'(n) \)\(\displaystyle rU=z+\theta m(\theta)[\,\frac{{\int_{0}^{n^*} \,}W(n)g(n)dn+h(n^{*})W(n^{*})G^{*}}{1-(1-h(n^{*}))G^{*}}-U\,]
\)Moreover, \(\displaystyle W'(n), J'(n)\) are with respect to \(\displaystyle n\in[0,\infty)\)
Thank you
I have the following equilibrium equation from which I want to extract \(\displaystyle \d{\theta}{\nu}\)
\(\displaystyle z+\theta m(\theta)[\,\frac{\int_{0}^{n^*} \,W(n)g(n)dn+h(n^{*})W(n^{*})G^{*}}{1-(1-h(n^{*}))G^{*}}-U\,]=-c+m(\theta)J'(0)\)
Where \(\displaystyle \nu, z, c, n, r, \delta, \xi\) are parameters, m(.), w(.) and h(.) are functions, and G(.) is a CDF. W(n), J(n) and U are Bellman equations of the following form:
\(\displaystyle (r+\delta+\xi)W(n)=w(n)+[m(\theta)-\delta n]W'(n)+(\delta+\xi)U
\)
\(\displaystyle (r+\delta)J(n)=F(n)+\nu-nw(n)+max\{0;-c+m(\theta)J'(n)\}-\delta nJ'(n) \)\(\displaystyle rU=z+\theta m(\theta)[\,\frac{{\int_{0}^{n^*} \,}W(n)g(n)dn+h(n^{*})W(n^{*})G^{*}}{1-(1-h(n^{*}))G^{*}}-U\,]
\)Moreover, \(\displaystyle W'(n), J'(n)\) are with respect to \(\displaystyle n\in[0,\infty)\)
Thank you
Last edited: