- #36
AdrianZ
- 319
- 0
I like Serena said:Okay, you counted it right, but then, you already knew it should be 3.
Anyway, I believe you were going to set up a generalized formula for k-cycles in Sn.
When you have that, you may want to revisit this problem.
Actually I wanted to set up a generalized formula for the number of solutions of the equation xn=e, but now I see that it can be a little bit more tricky when n is not a prime number, because then I'll have to count the number of the generated cycles as products of disjoint cycles. that would make it harder.
The number of k-cycles in Sn is (n,k)*(k-1)! as someone else mentioned. the reason is that first we have to choose k letters out of n letters for forming k-cycles, then we fix the first element and permute the others and that can be done in (k-1)! ways. so the answer will be (n,k)*(k-1)! where (n,k) is n choose k.
this gives us the ability to predict the solutions of xn=e when n is prime. since the only divisors of n are 1 and itself, we'll have (1 + (n-1)!) solutions.
so, x5=e we'll have 25 solutions in S5.
we can also predict the number of solutions of xk=e in Sn when n is prime. the answer will be (1 + (n,k)*(k-1)!).
the number of solutions of x4=e in S5 is 1 + 5*24 = 121.
the number of solutions of x2=e in S3 is 1 + 3*1 = 4. those solutions namely are: {e,(1 2),(1 3),(2 3)}.
the case where n is not prime is a bit tricky, but I'll think about it. first I'll need to prove some theorems, for example if p and q are two disjoint cycles, then o(pq)=o(p)o(q). it needs more considerations, I'll think about it later.
Thanks guys for the help, and have a nice thanksgiving holiday tomorrow.
Last edited: