- #1
LightPhoton
- 23
- 3
Consider an infinite well between ##0## and ##a##, the energy eigen functions are:
$$\phi(x)=\sqrt{\frac 2 a}\sin{\frac{n\pi x}a}$$
Since the Hamiltonian of this system is only a function of momentum operator ##(\hat H=\hat p^2/2m)##, we should be able to find a common energy and momentum eigenbasis, since ##[\hat H,\hat p]=0##.
But applying ##\hat p## to ##\phi(x)## we get:
$$\hat p \phi(x)=-i\hbar \partial_x \phi(x)=-i\hbar \frac{n \pi}a \sqrt{\frac 2 a}\cos{\frac{n\pi x}a}\neq k\phi(x)$$
Where ##k## is some constant.
So how do we find a common eigenbasis?
$$\phi(x)=\sqrt{\frac 2 a}\sin{\frac{n\pi x}a}$$
Since the Hamiltonian of this system is only a function of momentum operator ##(\hat H=\hat p^2/2m)##, we should be able to find a common energy and momentum eigenbasis, since ##[\hat H,\hat p]=0##.
But applying ##\hat p## to ##\phi(x)## we get:
$$\hat p \phi(x)=-i\hbar \partial_x \phi(x)=-i\hbar \frac{n \pi}a \sqrt{\frac 2 a}\cos{\frac{n\pi x}a}\neq k\phi(x)$$
Where ##k## is some constant.
So how do we find a common eigenbasis?