- #1
- 6,223
- 31
[SOLVED] More help in integrating
Find [tex]a,b,n[/tex] such that [tex]a,b[/tex] are rational and n is not an element of Z. a>0,b<0
[tex]\int_{0}^{1} \frac{3x}{\sqrt{1+6x-3x^2}} = \frac{\pi}{a^n} + b[/tex]
[tex]\int \frac{1}{\sqrt{A^2-X^2}} dx= \arcsin{\frac{X}{A}+K[/tex]
[tex]\int \frac{x}{R} = \frac{R}{a} -\frac{b}{2a}\int\frac{dx}{R} where R=\sqrt{ax^2+bx+c[/tex](Note: this really can't be used as working must be shown)
[tex]\int_{0}^{1} \frac{3x}{\sqrt{1+6x-3x^2}} dx = \int_0^{1} \frac{3x}{\sqrt{4-3(x-1)^2} }dx[/tex]
[tex]= \int_{0}^{1} \frac{3x}{\sqrt{(2)^2-(\sqrt{3(x-1)}})^2} dx[/tex]
Now I can't really see how to get rid of the "x" in the numerator...and way i can get rid of it?(by a nice substitution?
Homework Statement
Find [tex]a,b,n[/tex] such that [tex]a,b[/tex] are rational and n is not an element of Z. a>0,b<0
[tex]\int_{0}^{1} \frac{3x}{\sqrt{1+6x-3x^2}} = \frac{\pi}{a^n} + b[/tex]
Homework Equations
[tex]\int \frac{1}{\sqrt{A^2-X^2}} dx= \arcsin{\frac{X}{A}+K[/tex]
[tex]\int \frac{x}{R} = \frac{R}{a} -\frac{b}{2a}\int\frac{dx}{R} where R=\sqrt{ax^2+bx+c[/tex](Note: this really can't be used as working must be shown)
The Attempt at a Solution
[tex]\int_{0}^{1} \frac{3x}{\sqrt{1+6x-3x^2}} dx = \int_0^{1} \frac{3x}{\sqrt{4-3(x-1)^2} }dx[/tex]
[tex]= \int_{0}^{1} \frac{3x}{\sqrt{(2)^2-(\sqrt{3(x-1)}})^2} dx[/tex]
Now I can't really see how to get rid of the "x" in the numerator...and way i can get rid of it?(by a nice substitution?
Last edited: