- #1
Ocasta
- 40
- 0
Homework Statement
Find the area of the region enclosed between y=4sin(x) and y=2cos(x) from x=0 to x=0.8pi.
Homework Equations
[itex]\int^{0.8\pi}_0 dx [/itex]
[itex]
g(x) = 4\sin(x)
[/itex]
[itex]
f(x) = 2\cos(x)
[/itex]
The Attempt at a Solution
This problem needs to be split up into two parts.
[itex]
\int_0 ^n [f(x) - g(x)] dx + \int_n^{0.8\pi} [g(x) - f(x)] dx
[/itex]
My major problem is finding n.
I set:
[itex]
f(n) = g(n) \rightarrow 4\sin(n) = 2 \cos(n) \rightarrow 2\sin(n) = cos(n) \rightarrow 2 = \frac{cos(n)}{sin(n)} \rightarrow 2 = \cot(n)
[/itex]
I'm having trouble finding that point n. I've worked out that it's near
[itex]
\frac{15\pi}{96} = n
[/itex]
and with that n I have:
[itex]
\int_0^n [2 \cos(x) - 4 \sin(x)] dx + \int_n^{0.8\pi} [2 \cos(x) - 4\sin(x)] dx
[/itex]
[itex]
-2 \sin(x) - (-4) \cos(x)]_0^\frac{15\pi}{96} + [-2 \sin(x) - (-4) \cos(x)]_\frac{15\pi}{96}^{0.8\pi}
[/itex]
Last edited: