- #1
realcomfy
- 12
- 0
I just have a quick question about finding the average force of a dipole.
I am given the expression (after I derived it anyway):
[tex] \textbf{F} = -3 \left( \frac{e-1}{e+2} \right) \frac{R^{3}}{d^{7}} \left[4( p \bullet \hat d)^{2} \hat d + p^{2} \hat d - (p \bullet \hat d) \hat d \right][/tex]
where p is a vector whose direction is not specified. I am asked to average this force over all directions of p to give the average force for unpolarized dipoles. I am pretty sure this has something to do with integrating over the solid angle, but I am not sure how to treat the dipole terms in the force equation. Any help would be greatly appreciated!
I am given the expression (after I derived it anyway):
[tex] \textbf{F} = -3 \left( \frac{e-1}{e+2} \right) \frac{R^{3}}{d^{7}} \left[4( p \bullet \hat d)^{2} \hat d + p^{2} \hat d - (p \bullet \hat d) \hat d \right][/tex]
where p is a vector whose direction is not specified. I am asked to average this force over all directions of p to give the average force for unpolarized dipoles. I am pretty sure this has something to do with integrating over the solid angle, but I am not sure how to treat the dipole terms in the force equation. Any help would be greatly appreciated!