- #1
happyparticle
- 456
- 21
- Homework Statement
- Find the eigenvalue (first order) and eigenvector (0 order) for the first and second excited state (degenerate) for a perturbated hamiltonian
- Relevant Equations
- ##H' = kxy##
##H = \frac{p_x^2}{2m} +\frac{p_y^2}{2m} + \frac{1}{2}m \omega^2 x^2 + \frac{1}{2}m \omega^2 y^2 ##
Hi,
I have to find the eigenvalue (first order) and eigenvector (0 order) for the first and second excited state (degenerate) for a perturbated hamiltonian.
However, I don't see how to find the eigenvectors.
To find the eigenvalues for the first excited state I build this matrix
##
\begin{pmatrix}
\langle 01 | H'| \rangle 01 & \langle 10| H'| \rangle 01 \\
\langle 01 | H'| \rangle 10 & \langle 10| H'| \rangle 10
\end{pmatrix}
= \frac{k \hbar}{2 m \omega}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
##
Thus, I get the eigenvalue ##\pm \frac{k \hbar}{2 m \omega}##, but now I have no idea how to find the eigenvector for the 0 order.
Any help will me appreciate, thank you.
I have to find the eigenvalue (first order) and eigenvector (0 order) for the first and second excited state (degenerate) for a perturbated hamiltonian.
However, I don't see how to find the eigenvectors.
To find the eigenvalues for the first excited state I build this matrix
##
\begin{pmatrix}
\langle 01 | H'| \rangle 01 & \langle 10| H'| \rangle 01 \\
\langle 01 | H'| \rangle 10 & \langle 10| H'| \rangle 10
\end{pmatrix}
= \frac{k \hbar}{2 m \omega}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
##
Thus, I get the eigenvalue ##\pm \frac{k \hbar}{2 m \omega}##, but now I have no idea how to find the eigenvector for the 0 order.
Any help will me appreciate, thank you.