- #1
karush
Gold Member
MHB
- 3,269
- 5
Solve the system
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)
https://www.physicsforums.com/attachments/8922
$$Y'=\begin{bmatrix}2 & 1 & 0 \\0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}Y$$
subtract $\lambda$ from the diagonal entries of the given matrix and take det:
$$\left|
\begin{array}{ccc}
- \lambda + 2 & 1 & 0 \\
0 & - \lambda + 2 & 1 \\
0 & 0 & - \lambda + 4
\end{array}\right|
=(-\lambda+2)^{2}(-\lambda+4)$$
the roots are:
$$\lambda_1=2,\quad\lambda_2=2, \quad\lambda_3=4$$this is the example in the book I am trying to follow but I don't see how they got these vectors or the rest of it
(my matrix is similiar)
https://www.physicsforums.com/attachments/8922