- #1
Cottontails
- 33
- 0
Homework Statement
(a) Find the 6th complex roots of √3 + i.
(b) Let A={z|z^6 =√3+i} and B={z|Im(z)>0} and C={z|Re(z)>0}. Find A ∩ B ∩ C.
Homework Equations
z^6=2(cos(π/6)+isin(π/6))
r^6=2, r=2^1/6
6θ=π/6+2kπ, θ=π/36+kπ/3
The Attempt at a Solution
I've done part (a):
When k=0, z = 2^1/6(cos(π/36)+isin(π/36)),
When k=1, z = 2^1/6(cos(13π/36)+isin(13π/36)),
When k=2, z = 2^1/6(cos(25π/36)+isin(25π/36)),
When k=3, z = 2^1/6(cos(37π/36)+isin(37π/36)),
When k=4, z = 2^1/6(cos(49π/36)+isin(49π/36)),
When k=5, z = 2^1/6(cos(61π/36)+isin(61π/36)).
As for part (b) though, I am unsure for what the answer is. I understand that A={z|z^6 =√3+i} relates to part (a) however, I don't understand how you would find the intersection of A, B and C.
Please help? Thanks.