- #1
Math100
- 802
- 222
- Homework Statement
- Find the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ##.
- Relevant Equations
- None.
Consider ## 2^{3}=8\equiv 1 \pmod 7 ##.
Then ## 2^{50}=2^{48}\cdot 2^{2}=(2^{3})^{16}\cdot 2^{2}\equiv 1^{16}\cdot 2^{2} \pmod 7\equiv 2^{2} \pmod 7\equiv 4 \pmod 7 ##.
Thus ## 2^{50}\equiv 4 \pmod 7 ##.
Now observe that ## 41\equiv 6 \pmod 7\equiv (-1) \pmod 7 ##.
Then ## 41^{65}\equiv (-1)^{65} \pmod 7\equiv (-1) \pmod 7\equiv 6 \pmod 7 ##.
Thus ## 41^{65}\equiv 6 \pmod 7 ##.
Therefore, the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ## are ## 4 ## and ## 6 ##.
Then ## 2^{50}=2^{48}\cdot 2^{2}=(2^{3})^{16}\cdot 2^{2}\equiv 1^{16}\cdot 2^{2} \pmod 7\equiv 2^{2} \pmod 7\equiv 4 \pmod 7 ##.
Thus ## 2^{50}\equiv 4 \pmod 7 ##.
Now observe that ## 41\equiv 6 \pmod 7\equiv (-1) \pmod 7 ##.
Then ## 41^{65}\equiv (-1)^{65} \pmod 7\equiv (-1) \pmod 7\equiv 6 \pmod 7 ##.
Thus ## 41^{65}\equiv 6 \pmod 7 ##.
Therefore, the remainders when ## 2^{50} ## and ## 41^{65} ## are divided by ## 7 ## are ## 4 ## and ## 6 ##.