MHB How to Find the Sum of a Geometric Series with Variables?

  • Thread starter Thread starter Spencer23
  • Start date Start date
  • Tags Tags
    Geometric
AI Thread Summary
To find the sum of the first eight elements of a geometric series with variables, the formula S = a1(1 - r^n) / (1 - r) can be applied. For the series where a1 = -5 and r = x, the sum becomes S = -5(1 - x^8) / (1 - x). An alternative method involves expressing the sum as S = -5(1 + x + x^2 + ... + x^7) and manipulating the equation to derive the same result. The final expression confirms that S = -5(1 - x^8) / (1 - x). This approach effectively combines both formulaic and algebraic methods to solve the problem.
Spencer23
Messages
4
Reaction score
0
Hey,

Sorry if I am in the wrong part of the forums not sure where this question goes. I am having trouble with a geometric series that has letters involved. I understand the forumla for finding the sum of first n elements with just numbers. However the series i have is ..

a1 = -5, a2 = -5x, a3 = -5x^2...

How do i go about finding the sum of the first 8 elements with the normal formula for doing so? Which I am under the impression is ...

a1(1-r^n)/1-r
 
Mathematics news on Phys.org
Spencer23 said:
Hey,

Sorry if I am in the wrong part of the forums not sure where this question goes. I am having trouble with a geometric series that has letters involved. I understand the forumla for finding the sum of first n elements with just numbers. However the series i have is ..

a1 = -5, a2 = -5x, a3 = -5x^2...

How do i go about finding the sum of the first 8 elements with the normal formula for doing so? Which I am under the impression is ...

a1(1-r^n)/1-r

Hi Spencer23! Welcome to MHB! :)

You are entirely correct.
So with $a_1=-5$, $n=8$, and $r=x$, we get:
$$a_1 + a_2 +...+a_8 = -5 \cdot \frac{1-x^8}{1-x}$$
 
If you wanted to work the problem without a formula, you could state:

$$S=-5-5x-5x^2-5x^3-5x^4-5x^5-5x^6-5x^7=-5\left(1+x+x^2+x^3+x^4+x^5+x^6+x^7\right)$$

Now, multiply both sides by $x$:

$$Sx=-5\left(x+x^2+x^3+x^4+x^5+x^6+x^7+x^8\right)$$

If we subtract the first equation from the second, we obtain:

$$S(x-1)=-5\left(x^8-1\right)$$

Hence:

$$S=-5\frac{x^8-1}{x-1}=-5\frac{1-x^8}{1-x}$$
 
Nice answer!

MarkFL said:
If you wanted to work the problem without a formula, you could state:

$$S=-5-5x-5x^2-5x^3-5x^4-5x^5-5x^6-5x^7=-5\left(1+x+x^2+x^3+x^4+x^5+x^6+x^7\right)$$

Now, multiply both sides by $x$:

$$Sx=-5\left(x+x^2+x^3+x^4+x^5+x^6+x^7+x^8\right)$$

If we subtract the first equation from the second, we obtain:

$$S(x-1)=-5\left(x^8-1\right)$$

Hence:

$$S=-5\frac{x^8-1}{x-1}=-5\frac{1-x^8}{1-x}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
6
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
3
Views
3K
Replies
20
Views
2K
Replies
3
Views
2K
Back
Top