- #1
Kashmir
- 468
- 74
We've a two interacting particle system, with Hamiltonian as:
##H_{s y s}=\frac{\mathbf{p}_{1}^{2}}{2 m_{1}}+\frac{\mathbf{p}_{2}^{2}}{2 m_{2}}+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)##
we reduce it to two non interacting fictitious particles,one moving freely other in a central field, thus the system has Hamiltonian: ##H_{s y s}=\frac{\mathbf{P}^{2}}{2 M}+\frac{\mathbf{p}_{r e l}^{2}}{2 \mu}+V(\mathbf r)## with the operator relations as:
##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}##
##\mathbf{p}_{r e l}=\frac{m_{1} \mathbf{p}_{2}-m_{2} \mathbf{p}_{1}}{m_{1}+m_{2}}##
##\mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}##
We solve ##H|E\rangle=E|E\rangle## for the two non interacting particles and find the wavefunction ##\psi_{s y s}(\mathbf{R}, \mathbf{r})=\psi_{C M}(\mathbf{R}) \psi_{r e l}(\mathbf{r})##
How do we find the wavefunction in terms of ##\mathbf r_1,\mathbf r_2##? We can't just invert ##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}## and use them because they are operator relations.
##H_{s y s}=\frac{\mathbf{p}_{1}^{2}}{2 m_{1}}+\frac{\mathbf{p}_{2}^{2}}{2 m_{2}}+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)##
we reduce it to two non interacting fictitious particles,one moving freely other in a central field, thus the system has Hamiltonian: ##H_{s y s}=\frac{\mathbf{P}^{2}}{2 M}+\frac{\mathbf{p}_{r e l}^{2}}{2 \mu}+V(\mathbf r)## with the operator relations as:
##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}##
##\mathbf{p}_{r e l}=\frac{m_{1} \mathbf{p}_{2}-m_{2} \mathbf{p}_{1}}{m_{1}+m_{2}}##
##\mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}##
We solve ##H|E\rangle=E|E\rangle## for the two non interacting particles and find the wavefunction ##\psi_{s y s}(\mathbf{R}, \mathbf{r})=\psi_{C M}(\mathbf{R}) \psi_{r e l}(\mathbf{r})##
How do we find the wavefunction in terms of ##\mathbf r_1,\mathbf r_2##? We can't just invert ##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}## and use them because they are operator relations.