- #1
dagg3r
- 67
- 0
hi all got some problems with vectors so waswondering if anyone can check what I've done
is correct thanks
question1.
find the vector component of 2i+j-k in the direction of i-3j+2k
basically i use the rule
a=(v*w^)*w^
w^= i-3j+2k / sqrt(14)
thus v=2i+j-k
therefore a=(2i+j-k)*( i-3j+2k / sqrt(14) ) * (i-3j+2k / sqrt(14))
a= [2(1)-3(1)-1(2) /sqrt(14)] * [i-3j+2k / sqrt(14)]
a= -3/sqrt(14)* i-3j+2k / sqrt(14)
thus the vector componentis a=-3/14( i-3j+2k) ?
2. find the parametric equationsof the straightline of intersection of the planes
x-2y+3z=5
3x+y-2z=1
i used gaussian elimination and got the tableu
1 -2 3 | 5
3 1 -2 | 1 R2-3R1
1 -2 3 | 5
0 7 -11| -14
x-2y+3z=5
7y-11z=-14
z=t
sub z=t into 7y-11z=-14
y=11t/7 - 2
sub y=11t/7 - 2 into x-2y+3z=5
x= 5 + 1/7t
therefore are the parametric equations
x= 5 + 1/7t
y=11t/7 - 2
z=t
??
thanks all
is correct thanks
question1.
find the vector component of 2i+j-k in the direction of i-3j+2k
basically i use the rule
a=(v*w^)*w^
w^= i-3j+2k / sqrt(14)
thus v=2i+j-k
therefore a=(2i+j-k)*( i-3j+2k / sqrt(14) ) * (i-3j+2k / sqrt(14))
a= [2(1)-3(1)-1(2) /sqrt(14)] * [i-3j+2k / sqrt(14)]
a= -3/sqrt(14)* i-3j+2k / sqrt(14)
thus the vector componentis a=-3/14( i-3j+2k) ?
2. find the parametric equationsof the straightline of intersection of the planes
x-2y+3z=5
3x+y-2z=1
i used gaussian elimination and got the tableu
1 -2 3 | 5
3 1 -2 | 1 R2-3R1
1 -2 3 | 5
0 7 -11| -14
x-2y+3z=5
7y-11z=-14
z=t
sub z=t into 7y-11z=-14
y=11t/7 - 2
sub y=11t/7 - 2 into x-2y+3z=5
x= 5 + 1/7t
therefore are the parametric equations
x= 5 + 1/7t
y=11t/7 - 2
z=t
??
thanks all