- #1
Another1
- 40
- 0
Question
\(\displaystyle \int_{-1}^{1} cos(x) P_{n}(x)\,dx\)
____________________________________________________________________________________________
my think (maybe incorrect)
\(\displaystyle \int_{-1}^{1} cos(x) P_{n}(x)\,dx\)
\(\displaystyle \frac{1}{2^nn!}\int_{-1}^{1} cos(x) \frac{d^n}{dx^n}(x^2-1)^n\,dx\) This is rodrigues formula
by part n times
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) \frac{d^{n-n}}{dx^{n-n}}(x^2-1)^n\,dx\)
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) (x^2-1)^n\,dx\)
in case n = odd number
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n+1}{2}}sin(x) (x^2-1)^n\,dx\)
in case n = even number
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n}{2}}cos(x) (x^2-1)^n\,dx\)
_________________________________________________________________________________________________
how to integral
\(\displaystyle \int_{-1}^{1}sin(x) (x^2-1)^n\,dx\) and \(\displaystyle \int_{-1}^{1}cos(x) (x^2-1)^n\,dx\)
\(\displaystyle \int_{-1}^{1} cos(x) P_{n}(x)\,dx\)
____________________________________________________________________________________________
my think (maybe incorrect)
\(\displaystyle \int_{-1}^{1} cos(x) P_{n}(x)\,dx\)
\(\displaystyle \frac{1}{2^nn!}\int_{-1}^{1} cos(x) \frac{d^n}{dx^n}(x^2-1)^n\,dx\) This is rodrigues formula
by part n times
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) \frac{d^{n-n}}{dx^{n-n}}(x^2-1)^n\,dx\)
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) (x^2-1)^n\,dx\)
in case n = odd number
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n+1}{2}}sin(x) (x^2-1)^n\,dx\)
in case n = even number
\(\displaystyle \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n}{2}}cos(x) (x^2-1)^n\,dx\)
_________________________________________________________________________________________________
how to integral
\(\displaystyle \int_{-1}^{1}sin(x) (x^2-1)^n\,dx\) and \(\displaystyle \int_{-1}^{1}cos(x) (x^2-1)^n\,dx\)