- #1
Dustinsfl
- 2,281
- 5
I am trying to integrate
$$
\int_0^{\nu}\frac{d\theta}{(1 + e\cos\theta)^2}
$$
where $0<e<1$.
I tried using Residue Theory but that was messy and didn't come up as needed.
The highlights of that were:
$\cos z = \frac{z + \frac{1}{z}}{2}$
Denominator became $z + 2ze^2 + 2z^2e^2 + 2e^2 + 4z^2 + 4e$ and that factor to
$$
\left(z + \frac{1+2e^2+\sqrt{1-4e^2[15e(16+3e)]}}{4e(2+e)}\right)\left(z + \frac{1+2e^2-\sqrt{1-4e^2[15e(16+3e)]}}{4e(2+e)}\right)
$$
It is highly probably there were some errors with that mess. I wasn't sure if I could do:
$$
\cos 2z = \frac{2z + \frac{1}{2z}}{2}
$$
but I did.
Is there another way to integrate this? Any method real or complex is fine.
$$
\int_0^{\nu}\frac{d\theta}{(1 + e\cos\theta)^2}
$$
where $0<e<1$.
I tried using Residue Theory but that was messy and didn't come up as needed.
The highlights of that were:
$\cos z = \frac{z + \frac{1}{z}}{2}$
Denominator became $z + 2ze^2 + 2z^2e^2 + 2e^2 + 4z^2 + 4e$ and that factor to
$$
\left(z + \frac{1+2e^2+\sqrt{1-4e^2[15e(16+3e)]}}{4e(2+e)}\right)\left(z + \frac{1+2e^2-\sqrt{1-4e^2[15e(16+3e)]}}{4e(2+e)}\right)
$$
It is highly probably there were some errors with that mess. I wasn't sure if I could do:
$$
\cos 2z = \frac{2z + \frac{1}{2z}}{2}
$$
but I did.
Is there another way to integrate this? Any method real or complex is fine.