- #1
askor
- 169
- 9
What is ##\int \frac{1}{x^2 + 3} \ dx##?
This is my attempt:
##x = \sqrt{3} \tan \theta## --> ##dx = \sqrt{3} \sec^2 \theta \ d\theta##
##x^2 + 3 = (\sqrt{3} \tan \theta)^2 + 3##
##= 3 \tan^2 \theta + 3##
##= 3 (\tan^2 \theta + 1)##
##= 3 \sec^2\theta##
##\int \frac{1}{x^2 + 3} \ dx = \int \frac{1}{3 \sec^2\theta} (\sqrt{3} \sec^2 \theta \ d\theta)##
##= \frac{\sqrt{3}}{3} \int d\theta##
##= \frac{\sqrt{3}}{3} \theta + C##
Is there any next steps?
Is this correct?
Thanks
This is my attempt:
##x = \sqrt{3} \tan \theta## --> ##dx = \sqrt{3} \sec^2 \theta \ d\theta##
##x^2 + 3 = (\sqrt{3} \tan \theta)^2 + 3##
##= 3 \tan^2 \theta + 3##
##= 3 (\tan^2 \theta + 1)##
##= 3 \sec^2\theta##
##\int \frac{1}{x^2 + 3} \ dx = \int \frac{1}{3 \sec^2\theta} (\sqrt{3} \sec^2 \theta \ d\theta)##
##= \frac{\sqrt{3}}{3} \int d\theta##
##= \frac{\sqrt{3}}{3} \theta + C##
Is there any next steps?
Is this correct?
Thanks