- #1
karush
Gold Member
MHB
- 3,269
- 5
$\large{242.7.5.89}$
answer by Maxima
$$\displaystyle
I_{89}=\int\frac{4e^{x}}{16e^{2x}+25}\, dx
= \dfrac{\arctan\left(\frac{4\mathrm{e}^x}{5}\right)}{5}+C
\\
\begin{align}
\displaystyle
u& = { {4x}^{3}} & \frac{1}{u} du&= \,dx
\end{align} \\$$
so by table..
$$\displaystyle
I_{89}=\int\frac{u}{u^2+5^2}\frac{1}{u} du
=\int\frac{1\, }{u^2+5^2} du
=\frac{\tan^{-1}\left({\frac{u}{5}}\right)}{5}+C$$so far?
answer by Maxima
$$\displaystyle
I_{89}=\int\frac{4e^{x}}{16e^{2x}+25}\, dx
= \dfrac{\arctan\left(\frac{4\mathrm{e}^x}{5}\right)}{5}+C
\\
\begin{align}
\displaystyle
u& = { {4x}^{3}} & \frac{1}{u} du&= \,dx
\end{align} \\$$
so by table..
$$\displaystyle
I_{89}=\int\frac{u}{u^2+5^2}\frac{1}{u} du
=\int\frac{1\, }{u^2+5^2} du
=\frac{\tan^{-1}\left({\frac{u}{5}}\right)}{5}+C$$so far?
Last edited: